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Project Scope

» The goal of this project Is to design and implement a compact pressure sensor that is
easily embedded between layers of Multi-Layer Insulation (MLI).
< Rapid Response Time
< The ability to measure a large pressure range
< Noninvasive to the MLI

> This interstitial pressure is measured to quantify the heat transfer through the system

» Heat transfer Is critical to cryogenic storage and applications in space
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Project Objectives

» Develop a pressure sensor with minimal parts
» Minimize the wiring and power consumption of the device

» Minimize the heat produced by the sensor
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Project Constraints

> Pressure Sensor
< Be able to measure a pressure as low as 10> Pa

< Have a minimum response rate of 1 sample per second

> Multi-Layer Insulation

< Sensor dimensions shouldn’t exceed interlayer spacing
< 12 layers is roughly 5 mm

» Working environment
< Temperature conditions range from 293 K to 77 K
< Out gassing
< Vacuum
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Capacitor Design

1. Palladium-gold sputtered capacitance tracts

2. Silicone diaphragm
-125 um diameter
- 0.25 um thickness

3. Capacitor base shell
- Germanium doped Silica base
with cavity hollowed by
acidic etching

Vacuum

Figure 1: Cross section view of capacitor
(left), and exploded view (right)
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Multi-Stage Capacitor Design °

1: Capacitor top diaphragm:
-High sensitivity — reads low pressures
-165 um OD, 125 um ID diaphragm
- 20 nm thickness, 27 um deflection at 10 Pa

-Nano-metallic coating to create capacitor plate (sputtering)
. Silica spacer

3: Intermediate diaphragm:

-Medium to low sensitivity — reads medium to high
pressure ranges.

- 50 nm thickness, 28 um deflection at 150 kPa
4. Silica Base plate

5. Capacitor bottom plate:
-Rigid metallic plate

N

Figure 2: Displays the exploded
view of the multi stage capacitor
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Multi-Stage Capacitor Design

> Cavities formed in the silica
base by parabolic germanium
doped etching

» Capacitor assembled in a
vacuum

> Parts either fused together, or
set with a UV-reactive polymer h |

Vacuum

Figure 3: Multi stage capacitor cross
sectional view
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» Creating the nano-capacitance prototype falls outside of the time restraint and budget
» To progress with a prototype and testing, scaling must occur

» Wish to scale from 125 um diameter diaphragm to a more pragmatic 25 mm (200x)

< Enables the experimentation of capacitance pressure sensors in the previously shown design

< Easier implementation with ongoing sensor research directed at temperature detection
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Critical minimum thickness of
diaphragm at given pressure (P):

gy = yield stress

Wiax =

Maximum deflection at
given Pressure (P) and
thickness(h):

37T7”2P((1/M)2 —1)r?
16mER(1/,)?

Design Calculations

Critical maximum body pressure
at given shell thickness:

Max Pressure during liftoff =~ 150 kPa

¥y =1-0.901(1 — e~ %)

1 |r
= ToNt
u = Poisson's Ratio
E =Young's Modulus
r = diaphragm radius
[ = sensor length
t = shell thickness

Diaphragm
Diameter

Prototype 25 mm
Actual 125 um
Sensor

Design
Thickness

Safety
Factor

0.05 mm 0.10 mm 2.00

0.25 um

050 um  2.00

Critical
Diaphragm
Pressure

600 kPa 5.60 mm

600 kPa 28.0 um

Shell
Thickness

5mm 20 MPa

20 um 400 MPa
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Current Production Standpoint

» Silicone diaphragm acquired (0.1mm and 0.2 mm)

» Epoxy capacitor base finished using HIPS dissolvable filament
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Current Production Standpoint

» Waiting on access to SEM lab to begin sputtering tracts onto silicone

» Waiting on ordered UV polymer to adhere the diaphragm l;
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Experimental Testing 12

Capacitance is a function of geometry (area and distance apart)

Each capacitor has a resonant frequency that can be determined using a network analyzer and
oscilloscope

Network analyzer creates electromagnetic fields, which will cause voltage to oscillate in the capacitor

\oltage read at the capacitor positive will decrease when resonance has been achieved at the dictated
frequency

Resonance becomes a function of deflection, thus a function of pressure

Voltage = f(frequency)

Frequency, = f(deflection)
Pressure = f(deflection)

Pressure = f(frequencyy)
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Future Steps

> Prototype production finalization
> Interfacing sensors with system and computer
> Calibration

» Performance testing
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Updated Gantt Chart
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Background research

Acquisition of Testing Equipment

Concept Design

Concept Selction

Numerical Analysis

Purchasing and Delivery of Materials

Prototype Production

Interfacing Sensor with Computer/Callibration

Performance Testing
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