Design of a Compact Pressure Sensor for Multi-Layer Insulation in a Vacuum

Team 15 Sebastian Bellini Jason Carvalho Stephen Johnson Michael Kiefer

Faculty Advisor: Dr. Wei Guo Sponsor: NASA Marshall Space Flight Center Liaison Contact: James Jim Martin Date: 2/23/2017

Presentation Overview

- ▶ Project Scope
- Project Objectives
- ▶ Project Constraints
- House of Qualities
- \triangleright Designs
	- 1. Fiber Optics
	- 2. Capacitor
	- 3. Multi-Stage Capacitor
- \triangleright Decision matrix
- \triangleright Prototype design
- \triangleright Fresh Directive
- Modified Gantt Chart
- \triangleright Future Work

Project Scope

 \triangleright The goal of this project is to design and implement a compact pressure sensor that is easily embedded between layers of Multi-Layer Insulation (MLI).

- * Rapid Response Time
- The ability to measure a low pressure range
- Noninvasive to the MLI

 \triangleright This interstitial pressure is measured to quantify the heat transfer through the system

 \triangleright Heat transfer is critical to cryogenic storage and applications in space

Project Objectives

 \triangleright Develop a pressure sensor with minimal parts

- \triangleright Minimize the wiring and power consumption of the device
- \triangleright Minimize the heat produced by the sensor

Project Constraints

- Pressure Sensor
	- $\overline{\text{B}}$ Be able to measure a pressure as low as 10^{-2} Pa
	- ◆ Have a minimum response rate of 1 sample per second
- \triangleright Multi-Layer Insulation
	- Sensor dimensions shouldn't exceed interlayer spacing
		- 12 layers is roughly 5 mm
- \triangleright Working environment
	- Temperature conditions range from 293 K to 77 K
	- **❖ Outgassing**
	- **❖** Vacuum
	- **❖ Cold Welding**

House of Quality 5

Table 1 - House of Quality for Pressure Sensor Design

Presenter: Michael Kiefer

6

Fiber Optics

Observes change in phase, polarization, transmit time, or wavelength to measure pressure

 \triangleright Pros

- Good in high vibrational, wet, noisy, corrosive, and extreme heat environments
- Immune to electromagnetic interference
- Ability to measure a large range of pressures
- High Sensitivity and Bandwidth
- \div Size (125 micrometers)
- \triangleright Cons
	- Relatively difficult design
	- \div Cost
	- Assembly requires special equipment

Figure 1 Displays the size of a fiber optics pressure sensor Presenter: Michael Kiefer

Fiber Optic Design

 \triangleright 1: Silica diaphragm \div 125 µm OD 85 μm ID diaphragm **⊳2: Silica core**

 \geq 3: Lead-in optical fiber Multimodal or single modal

Figure 2 Cross section view and fully assembled view of Fiber optics sensor

Presenter: Michael Kiefer

Research on Efficient Production

- \triangleright UV polymer cavitation creation technique used to increase sensor batch success rates
	- **★ Technique could be implemented in** nano-capacitor design to decrease cost
- \triangleright "The sensor fabrication follows simple, repeatable processes and safe procedures, and uses less expensive materials and equipment."

pressure sensor created by using UV-molding process with an optical fiber based mold," Opt. Express 20, 14573-14583 (2012)

Figure 3 Shows UV polymer adhesion of a miniature Fabry-Perot fiber optic pressure sensor

Figure 4 Shows cavity creation accuracy (RED) against the starting

8

Presenter: Michael Kiefer

Figure 5 (left) Sensor base manufactured, (right) sensor diaphragm manufactured Presenter: Michael Kiefer

Capacitor Design

- 1. Capacitor top diaphragm:
	- \triangleleft High sensitivity reads low
		- pressures
	- 125 μm OD, 85 μm ID diaphragm
	- Nano-metallic coating to create capacitor plate
- 2. Silica Base plate
- 3. Capacitor bottom plate: **❖ Rigid metallic plate**

Figure 6 Cross section view of capacitor (left), and exploded view (right)

Presenter: Sebastian Bellini

Multi-Stage Capacitor Design

- 1: Capacitor top diaphragm:
	- -High sensitivity reads low pressures
	- -125 μm OD, 85 μm ID diaphragm
	- -Nano-metallic coating to create capacitor plate
- 2: Silica spacer
- 3: Intermediate diaphragm:
	- -Medium to low sensitivity reads medium to high
	- pressure ranges.
- 4: Silica Base plate
- 5: Capacitor bottom plate:
	- -Rigid metallic plate

1.

2.

3.

4.

5.

Multi-Stage Capacitor Design

- \triangleright Cavities formed in the silica base by germanium doped etching
- Capacitor assembled in a vacuum
- > Parts either fused together, or set with a UV-reactive polymer

Figure 8 Multi stage capacitor cross sectional view Presenter: Sebastian Bellini

13

Decision Matrix

Table 2 - Pugh Decision Matrix for pressure sensor concepts

naNO

- \triangleright Creating the nano capacitance prototype falls outside of the time restraint and budget
- To progress with a prototype and testing, scaling must occur
- \triangleright Wish to scale from 125 µm OD to a more pragmatic $12.5 25$ mm (100 200x)
	- Enables the experimentation of capacitance pressure sensors in the previously shown design
	- Easier implementation with ongoing sensor research directed at temperature detection

Prototype Production

 Create a 3D printed mold High Impact Polystyrene (HIPS) Dissolvable in D-Limonene

 Epoxy will be used as a substitute to create silicone base

 \triangleright Silicone diaphragm Palladium-Gold sputtering

Figure 9 3D printed HIPS mold
Figure 10 Mold dissolving in D-Limonene Presenter: Sebastian Bellini

Figure 11 Grey represents epoxy base plate being created with mold

Modified Gantt Chart 16

Future Work

 Use a Network Analyzer to determine the capacitor diagram thickness and bypass creating a circuit to read capacitance.

 \triangleright Interfacing Sensor with Computer

 \triangleright Sensor Calibration with a commercial sensor

 \triangleright Find an epoxy that is capable of withstanding low temperatures

 \triangleright Start performance testing

- **❖ Room-temperature tests**
	- Decreasing temperature with each trial

"OSA |." *OSA |*. N.p., n.d. Web. 21 Feb. 2017.

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-13-14573&id=238387

- Pinet, Éric, Edvard Cibula, and Denis Đonlagić. "Ultra-miniature All-glass Fabry-Pérot Pressure Sensor Manufactured at the Tip of a Multimode Optical Fiber."*Fiber Optic Sensors and Applications V* (2007): n. pag. Web. https://www.fiso.com/admin/useruploads/files/white_papers/ultra-miniature_all-glass_fabryp%C3%A9rot_pressure_sensor_manufactured_at_the_tip_of_a_multimode_optical_fiber.pdf
- Miranda Massie on April 5, 2016. "'Cha-Ching': Cost-Effective Health Hacks."*Healthy UBC Newsletter*. N.p., n.d. Web. 21 Feb. 2017.
- http://www.hr.ubc.ca/healthy-ubc-newsletter/2016/04/05/cha-ching-cost-effective-health-hacks/
- http://llerrah.com/images6/footprintstop.jpg
- https://fanart.tv/fanart/tv/76738/hdtvlogo/the-fresh-prince-of-bel-air-52dfe4313aae4.png