Design of a Compact Pressure Sensor for Multi-Layer Insulation in a Vacuum

Team 15
Sebastian Bellini
Jason Carvalho
Stephen Johnson
Michael Kiefer

Faculty Advisor: Dr. Wei Guo Sponsor: NASA Marshall Space Flight Center

Liaison Contact: James Jim Martin

Date: 2/23/2017

Presentation Overview

- Project Scope
- Project Objectives
- Project Constraints
- House of Qualities
- Designs
 - 1. Fiber Optics
 - 2. Capacitor
 - 3. Multi-Stage Capacitor
- Decision matrix
- Prototype design
- Fresh Directive
- Modified Gantt Chart
- Future Work

Project Scope

- > The goal of this project is to design and implement a compact pressure sensor that is easily embedded between layers of Multi-Layer Insulation (MLI).
 - * Rapid Response Time
 - * The ability to measure a low pressure range
 - Noninvasive to the MLI
- > This interstitial pressure is measured to quantify the heat transfer through the system
- ➤ Heat transfer is critical to cryogenic storage and applications in space

Project Objectives

- Develop a pressure sensor with minimal parts
- > Minimize the wiring and power consumption of the device
- Minimize the heat produced by the sensor

Project Constraints

- Pressure Sensor
 - ❖ Be able to measure a pressure as low as 10-2 Pa
 - * Have a minimum response rate of 1 sample per second
- Multi-Layer Insulation
 - Sensor dimensions shouldn't exceed interlayer spacing
 - * 12 layers is roughly 5 mm
- Working environment
 - ❖ Temperature conditions range from 293 K to 77 K
 - Outgassing
 - Vacuum
 - Cold Welding

House of Quality

Table 1 - House of Quality for Pressure Sensor Design

Customer Requirements	Customer Importance	Materials	Power Consumption	Geometry	Cost
Minimal Invasiveness	5	3	6	9	
Accuracy			6		6
Minimal Heat Produced		3	6		
Reading Range					6
Reading Speed			6		6
Total Weight		27	102	45	72

Fiber Optics

- > Observes change in phase, polarization, transmit time, or wavelength to measure pressure
- > Pros
 - * Good in high vibrational, wet, noisy, corrosive, and extreme heat environments
 - Immune to electromagnetic interference
 - Ability to measure a large range of pressures
 - High Sensitivity and Bandwidth
 - Size (125 micrometers)
- > Cons
 - Relatively difficult design
 - Cost
 - * Assembly requires special equipment

Figure 1 Displays the size of a fiber optics

pressure sensor Presenter: Michael Kiefer

Fiber Optic Design

- ➤ 1: Silica diaphragm
 - *125 μm OD
 - ♦85 µm ID diaphragm
- > 2: Silica core

- > 3: Lead-in optical fiber
 - * Multimodal or single modal

Figure 2 Cross section view and fully assembled view of Fiber optics sensor

Research on Efficient Production

- UV polymer cavitation creation technique used to increase sensor batch success rates
 - Technique could be implemented in nano-capacitor design to decrease cost
- The sensor fabrication follows simple, repeatable processes and safe procedures, and uses less expensive materials and equipment.

H. Bae and M. Yu, "Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold," Opt. Express 20, 14573-14583 (2012)

Figure 3 Shows UV polymer adhesion of a miniature Fabry-Perot fiber optic pressure sensor

Figure 4 Shows cavity creation accuracy (RED) against the starting mold shape (BLUE).

Figure 5 (left) Sensor base manufactured, (right) sensor diaphragm manufactured

Capacitor Design

- 1. Capacitor top diaphragm:
 - High sensitivity reads low pressures
 - * 125 μm OD, 85 μm ID diaphragm
 - Nano-metallic coating to create capacitor plate
- 2. Silica Base plate
- 3. Capacitor bottom plate:
 - * Rigid metallic plate

Figure 6 Cross section view of capacitor (left), and exploded view (right)

Presenter: Sebastian Bellini

Multi-Stage Capacitor Design

- 1: Capacitor top diaphragm:
 - -High sensitivity reads low pressures
 - -125 μm OD, 85 μm ID diaphragm
 - -Nano-metallic coating to create capacitor plate
- 2: Silica spacer
- 3: Intermediate diaphragm:
 - -Medium to low sensitivity reads medium to high pressure ranges.
- 4: Silica Base plate
- 5: Capacitor bottom plate:
 - -Rigid metallic plate

Figure 7 Displays the exploded view of the multi stage capacitor

Presenter: Sebastian Bellini

Multi-Stage Capacitor Design

- Cavities formed in the silica base by germanium doped etching
- Capacitor assembled in a vacuum
- Parts either fused together, or set with a UV-reactive polymer

Figure 8 Multi stage capacitor cross sectional view

Presenter: Sebastian Bellini

Decision Matrix

Table 2 - Pugh Decision Matrix for pressure sensor concepts

	Capacitor	Fiber Optics	Multi-Stage Capacitor
Accuracy	0	1	0
Minimal Invasiveness	0	0	0
Heat Production	0	-1	0
Reading Range	0	2	1
Reading Speed	0	0	0
Total	0	2] Presenter: Sehastian R

Presenter: Sebastian Bellin

naNO

- Creating the nano capacitance prototype falls outside of the time restraint and budget
- > To progress with a prototype and testing, scaling must occur
- Wish to scale from 125 μ m OD to a more pragmatic 12.5 25 mm (100 200x)
 - * Enables the experimentation of capacitance pressure sensors in the previously shown design
 - Easier implementation with ongoing sensor research directed at temperature detection

Prototype Production

- Create a 3D printed mold
 - * High Impact Polystyrene (HIPS)
 - * Dissolvable in D-Limonene
- > Epoxy will be used as a substitute to create silicone base
- > Silicone diaphragm
 - * Palladium-Gold sputtering

Figure 9 3D printed HIPS mold

Figure 10 Mold dissolving in D-Limonene

Figure 11 Grey represents epoxy base plate being created with mold

Presenter: Sebastian Bellini

Modified Gantt Chart

Future Work

- ➤ Use a Network Analyzer to determine the capacitor diagram thickness and bypass creating a circuit to read capacitance.
- ➤ Interfacing Sensor with Computer
- > Sensor Calibration with a commercial sensor
- > Find an epoxy that is capable of withstanding low temperatures
- > Start performance testing
 - * Room-temperature tests
 - □ Decreasing temperature with each trial

References

- "OSA | ." OSA | . N.p., n.d. Web. 21 Feb. 2017. https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-13-14573&id=238387
- Pinet, Éric, Edvard Cibula, and Denis Đonlagić. "Ultra-miniature All-glass Fabry-Pérot Pressure Sensor Manufactured at the Tip of a Multimode Optical Fiber." Fiber Optic Sensors and Applications V (2007): n. pag. Web. https://www.fiso.com/admin/useruploads/files/white_papers/ultra-miniature_all-glass_fabryp%C3%A9rot_pressure_sensor_manufactured_at_the_tip_of_a_multimode_optical_fiber.pdf
- Miranda Massie on April 5, 2016. "Cha-Ching": Cost-Effective Health Hacks. "Healthy UBC Newsletter. N.p., n.d. Web. 21 Feb. 2017.
- http://www.hr.ubc.ca/healthy-ubc-newsletter/2016/04/05/cha-ching-cost-effective-health-hacks/
- http://llerrah.com/images6/footprintstop.jpg
- https://fanart.tv/fanart/tv/76738/hdtvlogo/the-fresh-prince-of-bel-air-52dfe4313aae4.png