

Design of a Compact Pressure Sensor for Multi-Layer Insulation

Team 15: Sebastian Bellini, Jason Carvalho, Stephen Johnson, Michael Kiefer

Aim: To design and implement a compact pressure sensor to measure the interstitial vacuum pressure between layers of Multi-Layer Insulation (MLI).

Background	Capacitor Design	Design Constraints
 Multi-Layer Insulation is a thermal insulation system used to protect instrumentation on spacecraft and against boil-off of cryogenic fluids The pressure MLI is measured to determine if gaseous conduction and convection heat transfer become 		 Must read a minimum pressure of 10⁻² Pa Must read one sample per second Should be minimally invasive to the MLI Sensor must be able to work in space
significant.	Vacuum	Design Components
 Problematic Phenomena in Space Cold Welding Material Out-Gassing 		 Capacitance Tracts Palladium – Gold Sputtered Silicone Diaphragm
Objectives		* 125 μm diameter * 25 μm thickness
 Design a pressure sensor with minimal moving parts Minimize wiring and power 	2	 3. Capacitor Base Shell Sermanium doped Silica Acidic Etched cavity
consumption of the pressure sensor ≻Minimize heat produced by the sensor		Prototype Design
Future Work	3	Base plate mold for the prototype is 3D printed using HIPS filament. BP is
 Finish testing under vacuum conditions Perform Stress Analyses / Run Simulations 		constructed using epoxy. Capacitors are the same material. Prototype is scaled by a factor of 25