Conceptual Design of a Compact Pressure Sensor for Multi-Layer Insulation in a Vacuum

> Team 15 Sebastian Bellini Jason Carvalho Michael Kiefer Stephen Johnson

Faculty Advisor: Dr. Wei Guo Sponsor: James Jim Martin (NASA Marshall Space Flight Center) Date: 10/20/2016

Presentation Overview

- \triangleright Project Scope
- \triangleright Needs and Goal Statement
- \triangleright Project Constraints
- ▶ Background Research
	- **Multi-Layer Insulation**
	- **↑ Pressure Sensing Technology**
	- **Environmental Conditions**
- House of Qualities
- Design Concepts and selection

Project Scope

 \triangleright The aim of this project is to design and implement a compact pressure sensor that can easily fit between layers of Multi-Layer Insulation. Fast Response Time • Ability to measure a large pressure range • Noninvasive to the MLI

 \triangleright This interstitial pressure is measured to quantify the heat transfer through the system.

Needs and Goal Statement

Needs Statement

Due to their size, current pressure sensors are unable to measure the interstitial vacuum pressure between layers of MLI and generate undesirable heat and excess power while in operation.

Goal Statement

Design a minimally invasive pressure sensor that can be embedded within layers of MLI and doesn't cause significant heating.

Project Objectives

 \triangleright Develop a pressure sensing concept with minimal parts

- \triangleright Minimize the wiring and power consumption of the device
- \triangleright Minimize heat produced by the sensor
- \triangleright Ensure that the device is small enough to fit between layers of MLI
- \triangleright Demonstrate the operation of the device in a sample of 30 or more layers

Jason Carvalho

4

Project Constraints

 \triangleright Be able to measure a pressure range of 101 kPa to 10⁻² Pa

- \triangleright Have a minimum response rate of 1 sample per second
- \triangleright Sensor dimensions shouldn't exceed interlayer spacing
- \triangleright Temperature conditions range from 293 K to 77 K
- \triangleright Working environment

Multi-Layer Insulation (MLI)

- \triangleright High Performance Thermal Insulation System
- Comprised of Alternating Layers of a Polymer Film and Spacer Material
	- Film Layers are Mylar or Kapton
	- Metallic Coating applied to both sides of film to increase reflectivity, creating radiation shields
- Spacers
	- Constructed from Dacron, or Polyethylene Terephthalate
	- Webbed Pattern
	- \triangleleft Low thermal conductivity material

Figure 1 Layer of MLI with spacer

Multi-Layer Insulation

- \triangleright Thermal Performance based on the interstitial pressure
	- \triangleleft Works best at Interstitial Pressures < 10⁻² Pa
- \triangleright Thickness of layers varies and is determined by application
- Layers held together by silicone-based adhesives or metallic tape with low outgassing properties
- \triangleright Perforations allow venting as MLI transitions to a low pressure environment
- Outermost and Innermost Layers have special construction considerations

Applications of MLI

Liquid Cryogenic Propellant Storage

EXECUTE: Requires many layers of MLI determined by the boil off rate of the fluid

▶ Spacecraft, Satellites, Rovers

- \triangleq Instrumentation and Equipment
- **Structural Members**
- Spacesuits

Figure 2 MLI being applied to a probe

Pressure sensors

 Detects an event or change in environment and responds with a corresponding output

Common types:

- **❖** Thermal
- Piezoelectric
- **❖ Capacitance**
- **❖ Sound Acoustic Wave (SAW)**
- **∗** Ionization
- **Eiber Optic** ↓

Space Research

\triangleright Space is a vacuum.

- **❖** Convection does not naturally occur
- \triangleleft Conduction is very minimal
- \triangleright Cold welding
	- Common among mechanical parts
- \triangleright Out-gassing
	- Release of trapped air inside of materials
	- Can cause arcing between electrical components
	- Components are baked in a thermal vacuum chamber

House of Quality

11

Piezoelectric Pressure Sensor

\triangleright Piezoelectric effect

- **↓** Greek piezein meaning to squeeze
- Crystals, certain ceramics, DNA, and even bones
- **↓** Usually quartz crystals
- \triangleright Pros
	- **❖** High frequency response
	- **↑** Rugged

\triangleright Cons

- \triangleleft Sensitive to temperature change
- Tough to form correct geometry for specific use of crystal
- Limted pressure range
- \div Fairly small in size (centimeters)

Figure 3 Demonstrates the size of the Piezoelectric Sensor

Michael Kiefer

Surface Acoustic Wave (SAW)

\triangleright Surface Acoustic Wave

Converts electrical signal (IDT) to mechanical wave back to electrical signal

• Changes in amplitude, phase, frequency, and time delay

\triangleright Pros

- \triangleleft High frequency response
- Maintenance and recalibration free
- **❖** Size
- \div Pressure range (≈0-80⁶ Pa)

\triangleright Cons

• May be difficult to get SAW through MLI

Figure 4 Demonstrates the size of SAW and IDT

Michael Kiefer

Fiber Optic Pressure Sensor

- \triangleright Observes change in phase, polarization, transmit time, or wavelength to measure pressure
- Fabry-Pérot pressure sensor
- \triangleright Pros
	- Good in high vibrational, wet, noisy, corrosive, and extreme heat environments
	- Immune to electromagnetic interference
	- Ability to measure a large range of pressures
	- \div Size (125 micrometers)
- \triangleright Cons
	- Relatively difficult design
	- High cost

14

Figure 5 Fabry-Pérot Fiber optics pressure sensor size

Michael Kiefer

Decision Matrix

Table 2 Pugh decision matrix for pressure sensor concepts

Gantt Chart

9/8/16 9/23/16 10/8/16 10/23/16 11/7/16 11/22/16 12/7/16 12/22/16 1/6/17 1/21/17 2/5/17 2/20/17 3/7/17 3/22/17

Sebastian Bellini

16

Conclusion

- \triangleright Design a compact pressure sensor capable of measuring the pressure within MLI
- \triangleright Two main constraints:
	- 1. Working Environment
	- 2. MLI
- \triangleright Fiber optics was selected as the initial design.
	- Compact (125 micrometers in diameter)
	- Large pressure range

References

> MLI Picture -

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUK [Ewjni8eJ8OjPAhVGSyYKHWXSDH0QjRwIBw&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMu](https://en.wikipedia.org/wiki/Multi-layer_insulation) lti-

layer_insulation&bvm=bv.136499718,d.eWE&psig=AFQjCNEOqoxn2H03Q3iFInkqihO41KH7eQ&ust=14 77034598902982

\triangleright NASA Document

Application Reference –

- C. new © Date, year, P. Statement, and S. Applications, "Multi layer insulation, multilayer films for MLI insulation - Dunmore corporation,". [Online]. Available: http://www.dunmore.com/products/multi-layerfilms.html. Accessed: Oct. 20, 2016.
- Administrator, "SAW sensors: How it works," 2015. [Online]. Available: http://www.senseor.com/sawsensors-how-it-works.html. Accessed: Oct. 20, 2016.

Questions?