Design of a Compact Pressure Sensor for Multi-Layer Insulation in a Vacuum

Team 15 Sebastian Bellini Jason Carvalho Michael Kiefer Stephen Johnson

Faculty Advisor: Dr. Wei Guo Sponsor: NASA Marshall Space Flight Center Liaison Contact: James Jim Martin Date: 4/13/2017

Presentation Overview

- ▶ Project Scope
- \triangleright Project Objectives
- **Project Constraints**
- \triangleright Designs
	- 1. Capacitor
	- 2. Multi-Stage Capacitor
	- 3. Fiber Optics
- Prototype Scaling
- ▶ Design Calculations
- Prototype Production
- Experimental Setup / Testing
- Gantt Chart
- Future Work
- References

Presenter: Jason Carvalho

Project Scope

 \triangleright The goal of this project is to design and implement a compact pressure sensor that is easily embedded between layers of Multi-Layer Insulation (MLI).

- * Rapid Response Time
- The ability to measure a large pressure range
- Noninvasive to the MLI

 \triangleright This interstitial pressure is measured to quantify the heat transfer through the system

 \triangleright Heat transfer is critical to cryogenic storage and applications in space

Project Objectives

 \triangleright Develop a pressure sensor with minimal parts

 \triangleright Minimize the wiring and power consumption of the device

 \triangleright Minimize the heat produced by the sensor

Presenter: Jason Carvalho

Project Constraints

- Pressure Sensor
	- $\overline{\text{B}}$ Be able to measure a pressure as low as 10^{-2} Pa
	- ◆ Have a minimum response rate of 1 sample per second
- \triangleright Multi-Layer Insulation
	- Sensor dimensions shouldn't exceed interlayer spacing
		- 12 layers is roughly 5 mm
- \triangleright Working environment
	- Temperature conditions range from 293 K to 77 K
	- Out gassing
	- **❖** Vacuum

House of Quality 5

Table 1 - House of Quality for Pressure Sensor Design

Presenter: Jason Carvalho

Capacitor Design

1. Palladium-gold sputtered capacitance tracts

Figure 1: Cross section view of capacitor (left), and exploded view (right)

Presenter: Michael Kiefer

Multi-Stage Capacitor Design

1: Capacitor top diaphragm:

-High sensitivity – reads low pressures

- -165 μm OD, 125 μm ID diaphragm
- 20 nm thickness, 27 μm deflection at 10 Pa

-Nano-metallic coating to create capacitor plate (sputtering)

2: Silica spacer

3: Intermediate diaphragm:

-Medium to low sensitivity – reads medium to high pressure ranges.

- 50 nm thickness, 28 μm deflection at 150 kPa
- 4: Silica Base plate
- 5: Capacitor bottom plate: -Rigid metallic plate

1.

2.

3.

5.

7

Figure 2: Displays the exploded view of the multi stage capacitor Presenter: Michael Kiefer

8

Multi-Stage Capacitor Design

- \triangleright Cavities formed in the silica base by parabolic germanium doped etching
- Capacitor assembled in a vacuum
- > Parts either fused together, or set with a UV-reactive polymer

Figure 3: Multi stage capacitor cross sectional view

Presenter: Michael Kiefer

Fiber Optic Design

 \triangleright 1: Silica diaphragm \div 125 µm OD 85 μm ID diaphragm **⊳2: Silica core**

 \geq 3: Lead-in optical fiber Multimodal or single modal

Figure 5 Cross section view and fully assembled view of Fiber optics sensor

Presenter: Michael Kiefer

Fiber Optics

 \triangleright Observes change in phase, polarization, transmit time, or wavelength to measure pressure

 \triangleright Pros

- Good in high vibrational, wet, noisy, corrosive, and extreme heat environments
- \triangleleft Immune to electromagnetic interference
- Ability to measure a large range of pressures
- High Sensitivity and Bandwidth
- \div Size (125 micrometers)
- \triangleright Cons
	- **★** Relatively difficult design
	- \div Cost
	- Assembly requires special equipment

Figure 4 Displays the size of a fiber optics pressure sensor Presenter: Michael Kiefer

11

Presenter:

Stephen Johnson

Decision Matrix

Table 2 - Pugh Decision Matrix for pressure sensor concepts

naNO

- \triangleright Creating the nano-capacitance prototype falls outside of the time restraint and budget
- To progress with a prototype and testing, scaling must occur
- \triangleright Wish to scale from 125 µm diameter diaphragm to a more pragmatic 25 mm (200x)
	- Enables the experimentation of capacitance pressure sensors in the previously shown design
	- Easier implementation with ongoing sensor research directed at temperature detection

Sensor

 h

 σ_y

Design Calculations

Prototype Production

- \triangleright Silicone diaphragm acquired (0.1mm and 0.2 mm)
- \triangleright Epoxy capacitor base finished using HIPS dissolvable filament

Presenter: Stephen Johnson

Prototype Production

- \triangleright Use SEM lab to sputtering tracts onto silicone
- \triangleright UV polymer to adhere the diaphragm

Presenter: Stephen Johnson

Experimental Testing

- Capacitance is a function of geometry (area and distance apart)
- Each capacitor has a resonant frequency that can be determined using a network analyzer and oscilloscope
- \triangleright Network analyzer creates electromagnetic fields, which will cause voltage to oscillate in the capacitor
- Voltage read at the capacitor positive will decrease when resonance has been achieved at the dictated frequency 3k
- \triangleright Resonance becomes a function of deflection, thus a function of pressure

$V = I * R$
$Voltage = f(frequency)$
$Frequency_R = f(deflection)$
$Pressure = f(deflection)$
$Pressure = f(frequency_R)$

 1^k

100

Presenter: Sebastian Bellini

Presenter: Sebastian Bellini

Budget 18

Total Budget: \$500

- \triangleright Electronics: \$55
- \triangleright Silicone: \$40
- \triangleright Epoxy: \$60
- HIPS Filament: \$45

Updated Gantt Chart

Presenter: Sebastian Bellini

19

Future Work

 \triangleright Purchase Masterbond UV10 epoxy

 \triangleright Interface sensor with network analyzer

Calibrate sensor

 \triangleright Determine viability

References

- *Buckling of Thin-walled Circular Cylinders* (1965): n. pag. NASA. Web. 30 Mar. 2017
- "Elastic Constants Of Unidirectional Composites." *Composite Materials* (2002): n. pag. Web
- ► H. Bae and M. Yu, "Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold," Opt. Express 20, 14573-14583 (2012).
- Herakovich, Carl T. "Thin-Walled Pressure Vessels." *A Concise Introduction to Elastic Solids* (2016): 77-81. Web. 30 Mar. 2017.
- Massi, Miranda. "'Cha-Ching': Cost-Effective Health Hacks." *UBC Human Resources*. N.p., n.d. Web. 30 Mar. 2017
- McEntee, Jarlath. "Properties of Silicon." *Properties of Silicon*. N.p., n.d. Web. 30 Mar. 2017.
- "Mesa Diaphragm-based Fabry-Perot Optical MEMS Pressure Sensor IEEE Xplore Document."*Mesa Diaphragm-based Fabry-Perot Optical MEMS Pressure Sensor - IEEE Xplore Document*. N.p., n.d. Web. 30 Mar. 2017. \blacktriangleright
- "Miniature Fiber Optic Pressure Sensor for Medical Applications IEEE Xplore Document." *Miniature Fiber Optic Pressure Sensor for Medical Applications - IEEE Xplore Document*. N.p., n.d. Web. 30 Mar. 2017.
- ▶ Pinet, Éric, Edvard Cibula, and Denis Đonlagić. "Ultra-miniature All-glass Fabry-Pérot Pressure Sensor Manufactured at the Tip of a Multimode Optical Fiber." *Fiber Optic Sensors and Applications V* (2007): n. pag. Web.
- http://cdn.fibreglast.com/downloads/00343-A.pdf
- http://llerrah.com/images6/footprintstop.jpg
- https://www.engr.sjsu.edu/trhsu/ME189_Chapter%204.pdf
- http://www.ferroceramic.com/silicon_table.htm

Questions?