

Design of a Compact Pressure Sensor for Multi-Layer Insulation

Team 15: Sebastian Bellini, Jason Carvalho, Stephen Johnson, Michael Kiefer

Project Scope

The goal of this project is to design and implement a compact pressure sensor that can fit between the layers of Multi-Layer Insulation (MLI) and measure minute changes in pressure.

Background

- Multi-Layer Insulation is a thermal insulation system used to protect cryogenic fluids and spacecraft
- The unwanted interstitial pressure within the MLI allows for additional energy transfer between layers via conduction and convection
- Working Conditions
- Cold Welding
- Out gassing

Objectives

- Design a pressure sensor with minimal moving parts
- Minimize wiring and power consumption of the pressure sensor
- Minimize heat produced by the sensor

Constraints

- > Must read a minimum of 10^{-2} Pa
- Must read one sample per second
- Minimally invasive to the MLI

Challenges

- Achieving a viable price point for a UV silicone adhesive
- Determining a suitable diaphragm substitute
- Manufacturing sensor in vacuum chamber

Sponsor: James Jim Martin (NASA Marshall Space and Flight Center)

Capacitor Design

Palladium-Gold sputtered capacitance tract
 Silicone diaphragm
 Silica capacitor base

2	$p = \frac{0.855}{(1 - \mu^2)^{\frac{3}{4}}} * \frac{E_{\gamma}}{\left(\frac{r}{t}\right)^{\frac{5}{2}}}$	$\frac{\gamma}{r}$ * $\frac{l}{r}$	$\gamma = 1 - 0.901(1 - \frac{1}{16}) \sqrt{\frac{r}{t}}$
Maximum Deflection @ 150 kPa	Shell Thickness	Critical Body Pressure	$\mu = Poisson's R$ $E = Young's Mo$ $r = diaphragm$ $l = sensor lengt$
28um	20um	400 MPa	t = shell thickn

Faculty Advisor: Dr. Wei Guo

This plot demonstrates how the natural frequency relates to the impedance of the capacitor V = I * R Voltage = f(frequency) $Frequency_R = f(deflection)$ Pressure = f(deflection) $Pressure = f(frequency_R)$

Future Work

Purchase Masterbond UV10 epoxy
 Finish sensor assembly
 Test and calibrate sensor

Acknowledgements

We would like to thank Dr. Wei Guo for his guidance throughout the entire senior design process.

atio odulus radius th ess

Reference

- Ashrafi, Ashkan. *Research Gate*. Research Gate, Aug. 1999. Web.

- "Multi layer insulation, multilayer films for MLI insulation -Dunmore corporation