
### Design of a Compact Pressure Sensor for Multi-Layer Insulation in a Vacuum



Team 15 Sebastian Bellini Jason Carvalho Michael Kiefer Stephen Johnson



Faculty Advisor: Dr. Wei Guo Sponsor: James Jim Martin (NASA Marshall Space Flight Center) Date: 11/15/2016

## Presentation Overview

- Project Scope
- Project Objectives
- Project Constraints
- House of Quality
- Iteration of Designs
  - 1. Capacitor
  - 2. Multi-Stage Capacitor
  - 3. Fiber Optics Sensor
- Gantt Chart
- Future Work

#### Sebastian Bellini

1

# Project Scope

- The aim of this project is to design and implement a compact pressure sensor that can fit between the layers of Multi-Layer Insulation (MLI).
  - Fast Response Time
  - Ability to measure small pressure changes
  - \* Noninvasive to the MLI
- This interstitial pressure is measured to quantify the heat transfer through the system.

## Project Objectives

> Develop a pressure sensing concept with minimal parts

- > Minimize the wiring and power consumption of the device
- Minimize heat produced by the sensor

## Project Constraints

- Pressure Sensor
  - ♦ Be able to measure a pressure as low as  $10^{-2}$  Pa
  - \* Have a minimum response rate of 1 sample per second

#### Multi-Layer Insulation

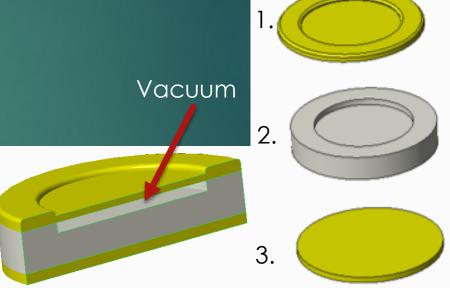
- Sensor dimensions shouldn't exceed interlayer spacing
- ✤ 12 layers is roughly 5 mm

#### Working environment

- Temperature conditions range from 293 K to 77 K
- Out gassing
- Vacuum

# House of Quality

#### Table 1 - House of Quality for Pressure Sensor Design


|                                                            |                     |           | -                 |          |      |
|------------------------------------------------------------|---------------------|-----------|-------------------|----------|------|
| Engineering<br>Characteristics<br>Customer<br>Requirements | Customer Importance | Materials | Power Consumption | Geometry | Cost |
| Minimal Invasiveness                                       | 5                   | 3         | 6                 | 9        |      |
| Accuracy                                                   | 5                   |           | 6                 |          | 6    |
| Minimal Heat Produced                                      |                     | 3         | 6                 |          |      |
| Reading Range                                              |                     |           |                   |          | 6    |
| Reading Speed                                              |                     |           | 6                 |          | 6    |
| Total Weight                                               |                     | 27        | 102               | 45       | 72   |

# Capacitor Design

1. Capacitor top diaphragm: ✤ High sensitivity – reads low pressures \* 125 μm OD, 85 μm ID diaphragm \* Nano-metallic coating to create capacitor plate 2. Silica Base plate

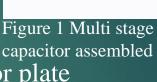

3. Capacitor bottom plate:
Rigid metallic plate
Stephen Johnson

Figure 1A cross section view of capacitor (left), and exploded view (right)



# Multi-Stage Capacitor Design

- 1. Capacitor top diaphragm:
  - High sensitivity reads low pressures
  - \*125 μm OD, 85 μm ID diaphragm
  - \* Nano-metallic coating to create capacitor plate
- 2. Silica spacer
- 3. Intermediate diaphragm:
  - Medium to low sensitivity reads medium to high
    - pressure ranges.
- 4. Silica Base plate
- 5. Capacitor bottom plate: \* Rigid metallic plate





2.

3

7



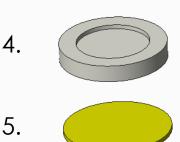



Figure 2 Displays the exploded view of the multi stage capacitor Stephen Johnson

#### 8

### Multi-Stage Capacitor Design

- Cavities formed in the silica base by germanium doped etching
- Capacitor assembled in a vacuum
- Parts either fused together, or set with a UV-reactive polymer

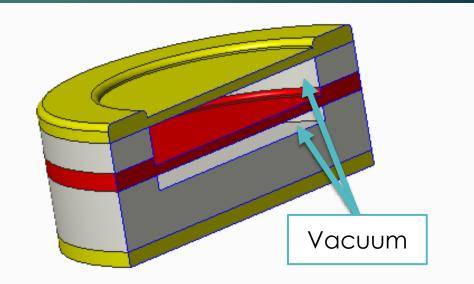



Figure 3 Multi stage capacitor cross sectional view

#### Stephen Johnson

# Fiber Optics

> Observes change in phase, polarization, transmit time, or wavelength to measure pressure

> Pros

- ✤ Good in high vibrational, wet, noisy, corrosive, and extreme heat environments
- ✤ Immune to electromagnetic interference
- Ability to measure a large range of pressures
- High Sensitivity and Bandwidth
- Size (125 micrometers)
- > Cons
  - Relatively difficult design
  - Cost
  - Assembly requires special equipment

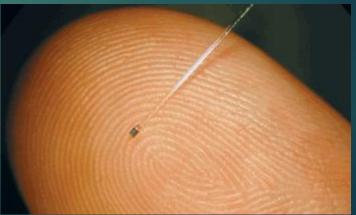



Figure 4 Displays the size of a fiber optics pressure sensor

Stephen Johnson

# Fiber Optic Design

> 1: Silica diaphragm
◆ 125 µm OD
◆ 85 µm ID diaphragm
> 2: Silica core

> 3: Lead-in optical fiber
 \* Multimodal or single modal

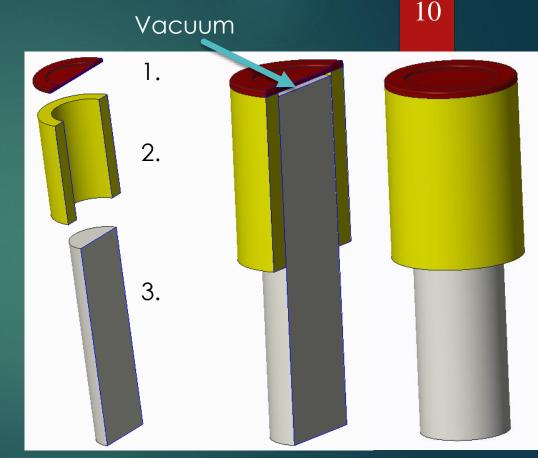
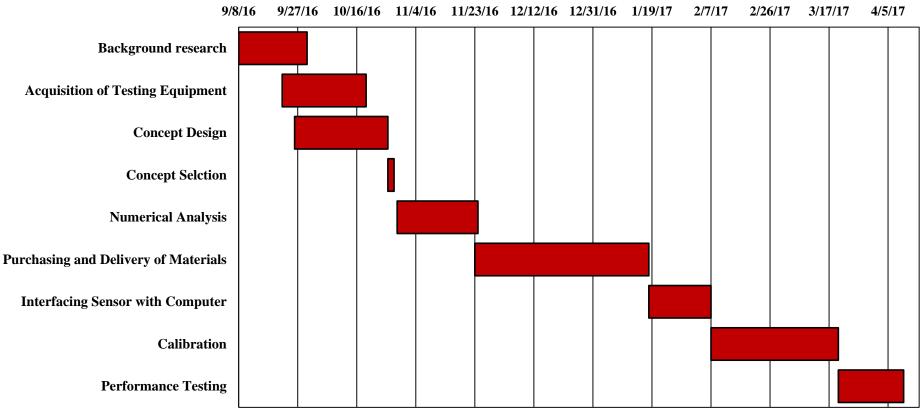



Figure 5 Cross section view and fully assembled view of Fiber optics sensor

Stephen Johnson


### 11

## Decision Matrix

#### Table 2 - Pugh Decision Matrix for pressure sensor concepts

|                      | Capacitor | Fiber Optics | Multi-Stage Capacitor |
|----------------------|-----------|--------------|-----------------------|
| Accuracy             | 0         | 1            | 0                     |
| Minimal Invasiveness | 0         | 0            | 0                     |
| Heat Production      | 0         | -1           | 0                     |
| Reading Range        | 0         | 2            | 1                     |
| Reading Speed        | 0         | 0            | 0                     |
| Total                | 0         | 2            | 1                     |

## Gantt Chart



13

# Future Steps

- Purchasing of material
- > Interfacing sensors with system and computer
- Calibration
- Performance testing
- Comparison of both designs for final selection

#### 14

## Conclusion

Revisited the conceptual design phase
 Capacitor pressure sensor
 Multi-stage capacitor pressure sensor

Two designs selected for experimentation
 Fiber Optics
 Multi-stage capacitor

> The next step is to contact multiple suppliers in the fields of:

- Fiber optics
- Nano-manufacturers

### References

#### NASA Document

- C. new © Date, year, P. Statement, and S. Applications, "Multi layer insulation, multilayer films for MLI insulation - Dunmore corporation,". [Online]. Available: http://www.dunmore.com/products/multi-layer-films.html. Accessed: Oct. 20, 2016.
- Administrator, "SAW sensors: How it works," 2015. [Online]. Available: http://www.senseor.com/saw-sensors-how-it-works.html. Accessed: Oct. 20, 2016.
- Ashrafi, Ashkan. *Research Gate*. Research Gate, Aug. 1999. Web. <a href="https://www.researchgate.net/publication/234858328\_A\_high\_precision\_method\_for\_measuring\_very\_small\_capacitance\_changes">https://www.researchgate.net/publication/234858328\_A\_high\_precision\_method\_for\_measuring\_very\_small\_capacitance\_changes</a>>.

# Questions?