

# Team 14: Noise Mitigation in Turbine Bypass Line

#### **Members:**

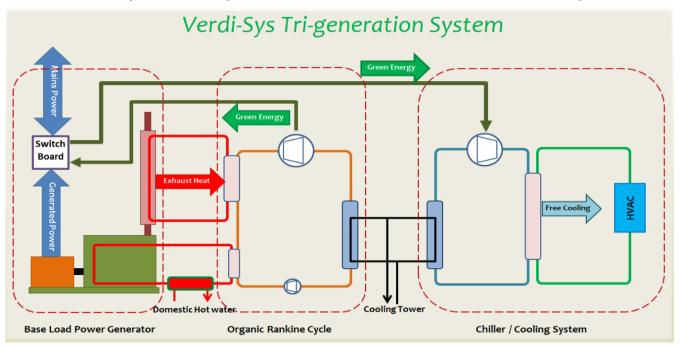
Chad Adams Austin Houser William Mauch Luis Figueroa

#### **Faculty Advisor**

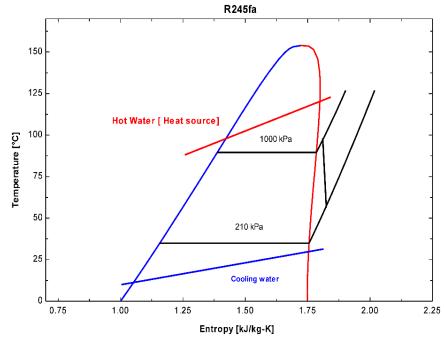
Dr. Louis Cattafesta

#### **Sponsor Representative**

**Corey Nelson** 


#### Instructors

Dr. Nikhil Gupta Dr. Chiang Shih




# Organic Rankine Cycle (ORC) Overview

- Thermodynamic Cycle used to convert heat energy into work.
- Utilized by Verdicorp to turn waste heat from industrial processes into reusable electricity.



ORC Operation Cycle [1]



R245fa T-S Diagram [2]



# Turbine Bypass Line

Purpose: Divert refrigerant R245fa from flowing through the turbine.

- Runs refrigerant through filter
- Removes risk of damage to turbine blades from liquid refrigerant.
- Takes place during start up and shut down of the system.



**ORC Turbine Bypass Line** 



### Project Definition

#### **Need Statement**

• When operating in bypass, the ORC system generates an unacceptably loud amount of noise. A solution needs to be found to mitigate the bypass line noise while not impeding the performance of the system or requiring significant modifications of exiting components.

### **Goal Statement Objectives**

- Solution must be cost effective.
- Must not impede performance of the system.
- Reduce Bypass line noise levels toward turbine steady-state noise levels.
- Can be manufactured in Verdicorp machine shop.



### Tallahassee Noise Ordinance

TABLE 2

| Residential Property    |                             |  |  |  |  |
|-------------------------|-----------------------------|--|--|--|--|
| Times                   | Sound Limits                |  |  |  |  |
| 7:00 a.m. to 10:00 p.m. | 55 dB(A) or <u>65</u> dB(C) |  |  |  |  |
| 10:00 p.m. to 7:00 a.m. | <u>50</u> dB(A) or 60 dB(C) |  |  |  |  |
| Non-Residential         |                             |  |  |  |  |
| Times                   | Sound Limits                |  |  |  |  |
| 7:00 a.m. to 10:00 p.m. | 70 dB(A) or 85 dB(C)        |  |  |  |  |
| 10:00 p.m. to 2:00 a.m. | 70 dB(A) or 80 dB(C)        |  |  |  |  |
| 2:00 a.m. to 7:00 a.m.  | 55 dB(A) or <u>65</u> dB(C) |  |  |  |  |

Tallahassee Code of Ordinances Sec. 12-94. - Maximum permissible sound. [3]



### Measurement Methodology

#### **Proposed Measurement Setup**

- 10, 20, 40, and 60 meters increments
- Multiple measurements during startup and shutoff transient states
- Record and average steady state noise levels as baseline





# Measurement Equipment

### Sound Level Meter (SLM)

- Type 2, ± 2dB
- Must be calibrated prior to and after use

#### **DAQ System**

- Nyquist Criterion:  $f_s > 2f_c$
- Audible frequencies, 20Hz to 20KHz
- LabVIEW data logging







# Engineering House of Quality

|                              | ENGINEERING CHARACTERISTICS |                      |                 |                        |                           |                          |                           |  |
|------------------------------|-----------------------------|----------------------|-----------------|------------------------|---------------------------|--------------------------|---------------------------|--|
| CR                           | CI                          | Meets OSHA standards | Material Choice | Fasteners and Fixtures | Temperature<br>Resistance | Acoustic<br>Transmission | Vibration<br>Transmission |  |
| Adaptable                    | 7                           |                      |                 | 6                      |                           | 7                        | 7                         |  |
| Low Cost                     | 8                           |                      | 10              | 6                      |                           |                          |                           |  |
| In-house Manufacturing       | 8                           | 10                   | 10              | 4                      |                           |                          |                           |  |
| Non-Intrusive to Performance | 10                          |                      | 8               | 5                      |                           |                          |                           |  |
| Steady-State Noise Levels    | 10                          | 10                   | 10              |                        |                           | 10                       | 8                         |  |
| Compact                      | 2                           |                      | 6               | 8                      | 5                         | 6                        |                           |  |
| Ease of Installation         | 5                           |                      |                 | 10                     |                           | 8                        |                           |  |
| Maintenance                  | 3                           |                      | 10              | 8                      | 10                        |                          | 8                         |  |
| Score                        |                             | 180                  | 382             | 262                    | 40                        | 201                      | 153                       |  |
| Relative weight              |                             | 14.78                | 31.36           | 21.51                  | 3.28                      | 16.50                    | 12.56                     |  |
| Rank                         |                             | 4                    | 1               | 2                      | 6                         | 3                        | 5                         |  |



# Affinity Diagram

#### Distance

Separate housing located at a distance

### Absorption

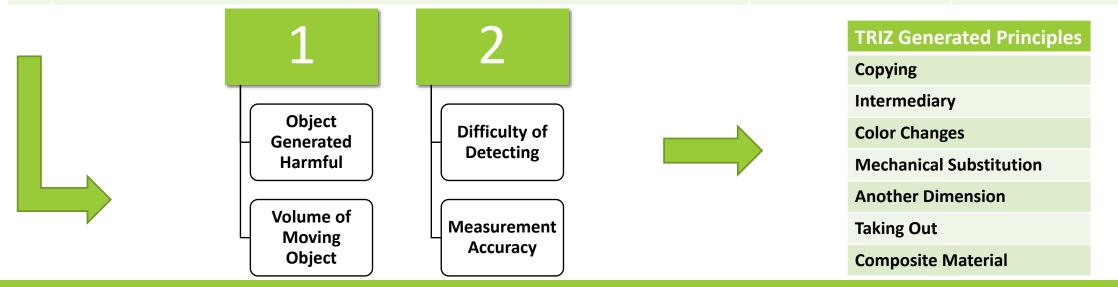
Outfit container with acoustic foam

Outfit bypass line with dampening sleeve

### Cancellation

Destructive interference noise cancellation

# System Modifications

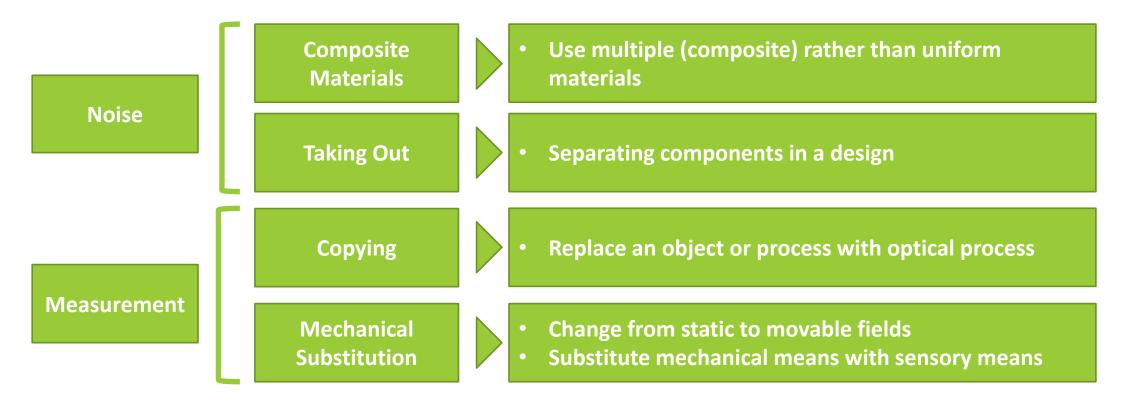

Turbulence Management

Brace/support implementation



# Theory of Inventive Problem Solving(TRIZ)

| Design Contradictions |                                                                                                                                | Feature to Improve      | Features to Preserve    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|
| 1                     | Mitigate noise generation without interfering with pipe flow or pipe length/structure                                          | Noise Generation        | Pipe Flow               |
| 2                     | Take noise measurements in one location, while measuring noise during transient and steady-state without contaminating results | Measurement<br>Accuracy | Difficulty in Detecting |




[6]



# TRIZ: Principles

Taking the pertinent principles from the previous list

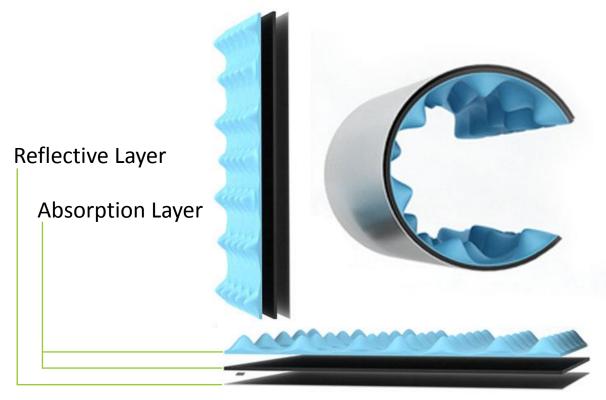




### Concept 1: Acoustic Lagging

TRIZ principle: Composite Material

#### **Acoustic Lagging Function**


- Noise propagates through pipe
- Absorbing material reduces sound pressure
- Reflective exterior layer redirects pressure waves back towards absorbing layers

#### Pros

- Cheap
- Easy installation and manufacture
- Simple and durable

#### Cons

- Spacing around piping
- Does not interfere with transducer function



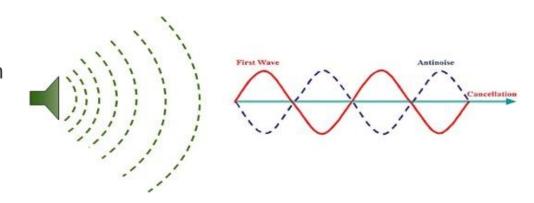
Fletcher Insulation Pipe Lagging [7]



# Concept 2: Active Noise Cancelling

TRIZ principle: Mechanical Substitution

#### **Active Noise Cancellation**


- Noise propagates through pipe
- Active noise cancellation system detects noise frequencies
- System expels noise waves opposite of detected waves in order to decrease wave magnitude.

#### Pros

- Reactive noise cancellation
- Will lower steady-state noise level in addition to bypass line

#### Cons

- Expensive
- Efficiency decreases at higher frequencies



**Active Noise Cancellation Process [8]** 



### Concept 3: Turbulence Management

TRIZ principle: Mechanical Substitution

#### **Turbulence Management**

 Reducing pipe bends and certain types of control valves can greatly effect the noise levels in the pipe.

#### Pros

- Can have drastic reductions of the noise levels
- Can assist in decreasing damaging pipe vibrations

#### Cons

- Effects flow properties in the pipe
- Increased installation and replacement time
- Addition manufacturing costs



Webtec FV202 pneumatic ball valve [9]



### Challenges

- Measurement Equipment
- Finding specific location of noise source
- Schedule Conflicts

### Future Plans

- Rent/ Borrow Equipment
- Noise Measurements and Analysis
- Determine the source of the noise
- Generate prototypes



### Gantt Chart





### Resources

- 1. "Energy, Exergy and Performance Analysis of Small-Scale Organic Rankine Cycle Systems for Electrical Power Generation Applicable in Rural Areas of Developing Countries," MDPI. [Online]. Available: http://www.mdpi.com/1996-1073/8/2/684/htm. [Accessed: 04-Oct-2016].
- 2. "High performance tri-generation," *Verdicorp Environmental Technologies*. [Online]. Available: http://www.verdicorp.com/trigeneration brochure 20120428.pdf. [Accessed: 25-Sep-2016].
- 3. "City of Tallahassee Code of Ordinance," *Municode Library*. [Online]. Available: https://www.municode.com/library/fl/tallahassee/codes/code\_of\_ordinances?nodeid=ptiicogeor\_ch12ofmipr. [Accessed: 08-Oct-2016].
- 4. "Noise Measurement," PPE Safety Solutions. [Online]. Available: http://solutions.3m.com/wps/portal/3m/en\_eu/ppe\_safetysolutions\_eu/safety/product\_catalogue/~/3m-soundpro-se-dl-series-sound-level-meter-sp-dl-1-1-3?n=5158380 3294756793 3294857473. [Accessed: 08-Oct-2016].
- 5. "NI 9218 Dynamic Universal Simultaneous Analog Input, 51.2 kS/s, 2 Ch," NI 9218. [Online]. Available: http://sine.ni.com/nips/cds/view/p/lang/en/nid/212730. [Accessed: 09-Oct-2016].
- 6. "TRIZ Matrix / 40 principles / TRIZ contradictions table," TRIZ Matrix / 40 principles / TRIZ contradictions table. [Online]. Available: http://www.triz40.com/triz\_gb.php. [Accessed: 08-Oct-2016].
- 7. "Thermal Insulation Materials For Residential Fletcher Insulation," Fletcher Insulation. [Online]. Available: http://insulation.com.au/product/pipe-acoustic-lagging/. [Accessed: 10-Oct-2016].
- 8. By detecting the unwanted noise with a reference microphone, the ANC system can automatically generate the correct signal to send to the speaker, which will produce the anti-noise, canceling out the unwanted noise. The size of the quiet zone created near the error microphone depends on the wavelength of the noise., "Quieting the Home," Appliance Design Magazine RSS. [Online]. Available: http://www.appliancedesign.com/articles/92572-quieting-the-home. [Accessed: 11-Oct-2016].
- 9. "2FV2V (Variable priority flow divider valve)," Webtec. [Online]. Available: http://www.webtec.com/en/productgroup/hfcv\_2fv. [Accessed: 10-Oct-2016].



# Questions?