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Motivation 

To implement distributed engineering by collaborating with Florida 
Institute of Technology by dividing goals and working effectively 
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Project Statement

Goal: Design and develop an autonomous ground vehicle capable of 
competing in the Intelligent Ground Vehicle Competition in June 2017.
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• COE Goals:
• Platform Design
• Hardware Integration 
• Localization 

• FIT Goals:
• Perception
• Object/Color Detection 
• Motion Planning 
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Intelligent Ground Vehicle Competition (IGVC)

June 2nd 2017 at Oakland University (Rochester, MI)

Multidisciplinary Competition with application in real world 
• Electrical Engineering 

• Computer Science and Engineering 

• Mechanical Engineering

Three Challenges: Design, Programming, Auto-Nav

Two Courses: Basic and Advanced
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IGVC : Auto – Nav Challenge  
The Basic Course
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= Barrel/Obstacle

= GPS waypoint 

= Painted Lines 
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IGVC : Auto – Nav Challenge  
The Advanced Course
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= Barrel/Obstacle
= GPS waypoint 

= Fencing 

= Gates 
= Flags
= Painted Lines 
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Vehicle Must have 
• Object Detection/Collision 

Avoidance
• Color/Line Detection
• GPS Waypoint Navigation
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IGVC: Constraints 

Dimensions of the Vehicle:

• 3ft < Length < 7ft 

• 2ft < Width < 4ft 

• Max Height - 6ft

• 1 mph ≤ Speed ≤ 5mph

• Payload: 20lb - 18” x 8” x 8”
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Previous Years Prototype

Team 22 successfully built a prototype that could execute straight lines 

Wooden made it easy to modify

Differential steering

Two Fixed Wheels

Two Caster Wheels

Previous purchased hardware
• Zed 
• TX1
• Rasberry Pi
• myRio
• Andy Mark Motors 
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House of Quality

Most Important 
Characteristics:

COE -
1. Weight

2. Structural Integrity

3. Affordability

FIT -
1. Image Processing

2. Communication Protocols

3. Computation time
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Competition 

Requirements

1 4.0 Durability 2 10 6 5 5 7

2 5.0 Size of Robot 5 4 7 2 10

3 4.0 Localization 1 8 6 4 8 2

4 5.0 Reliability 10 4 1 5 8 10

5 2.0 IOP Challenge 10 8 6

6 3.0 Speed 7 4 10 10

7 3.0 Accessibility 6 2 4 10

8 5.0 Safety 5 7 4

9 5.0 Motion Planning 1 5 8 10 8 2 6 2

10 2.0 Innovative Design 4 3 4 2 2 4 1 6
Score 92 109 109 117 118 71 106 20 51 92 88 120

Rank 7.0 4.0 5.0 3.0 2.0 10.0 6.0 12.0 11.0 8.0 9.0 1.0



Morphological Chart 
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Design 1 Design 2 Design 3
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Steer
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Body Carbon fiber Fiber glass Aluminum Plastic

Positioning
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Decision Matrix 
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Concept weighting [1=better than datum, -1=worse than datum]

Engineering Char. Datum Design 1 Design 2 Design 3

Water Resistant 0 1 1 1

Structural Integrity 0 -1 -1 0

Affordability 0 1 1 1

Fabrication Time 0 -1 -1 -1

Energy Consumption 0 -1 0 1

Modular Design 0 1 1 -1

Weight 0 0 0 1

Totals 0 0 1 2

Design 3:
• Differential Steering 
• Wheels 
• Frame: Hollow 

Aluminum Tube 
• Frame Welded 

together 
• Carbon Fiber body 
• Motors located inside

Matthew Patton

Last years Winner:
Lawrence Tech University



Design 3
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Carbon Fiber Body

13in Wheels

Batteries

Fans

Fan

Camera pole

10in Caster
Wheels



Overall Schematic
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Angular Velocity

Actual ωL

Actual ωR

Perception

ZED Camera

Jetson TX 1

Swift Piksi
Navigation MyRIO

Justin Daniel



Hardware: Computer

NVidia Jetson TX1
• 4K video encode and decode capabilities

• Camera interface capable of 1400 MPix/s

• Capable of embedded deep learning, computer vision, 
graphics, and GPU computing.

Raspberry Pi 2 (Model: B+)
• Accessible GPIO

• Communication with MyRIO
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Jetson TX 1

Raspberry PI b+



Hardware: Navigation

Piksi by SwiftNAV
• 2-3 Meter Accuracy (Without Base Station)

• Centimeter Accuracy (With Base Station)

• 10 Hz Update Rate

IMU: Crossbow NAV440
• 6 DOF

Quadrature Encoders to Output Shaft
• 700 ticks per revolution 

• Gear Ratio-50:1
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Piksi by SwiftNAV

NAV440 by Crossbow

Example Encoder

Justin Daniel



Hardware: Object Detection/Collision Avoidance

FIT –

ZED™ 2K Stereo Camera
• Depth Sensing

• Positional Tracking

• 3D Mapping

• Object detection

• Point Cloud Library (PCL)

COE –

2D Lidar

• Increase Working Depth of Robot

• Preliminary Identification of Objects
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ZED 2K Stereo 
Camera

2D Lidar

Justin Daniel



PD Control for Position

• Receives Vehicle Command Velocities (Linear and Angular)

• Programmed through MyRIO/LabVIEW

• Encoders Determine Error in Position and Velocity
• Inaccuracy due to wheel slippage
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MyRIO Microcontroller

Justin Daniel



Kinematic Model

Inputs
• Linear Velocity of Vehicle

• Angular Velocity of Vehicle

Outputs
• Angular Velocity of Wheels
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Kinematic Model for 
differential steering
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Gantt Chart for Fall Semester 2016
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COE –
FIT –



Future Work
Design
• Order/Create Parts 

• Assembly and Waterproofing

Power
• Electronics Schematic

Communication
• GPS/IMU to PD Control

• Serial Communication

Intelligence
• SBMPO

• Obstacle Avoidance
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Questions?
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