Team 11:

Design of an Autonomous Ground Vehicle

For Intelligent Ground Vehicle Competition

FLORIDA A&M UNIVERSITY - FLORIDA STATE UNIVERSITY - FLORIDA INSTITUTE OF TECHNOLOGY

FAMU-FSU

College of Engineering

Andres Nodarse
Ezekiel Copeland
Justin Daniel
Matthew Patton
Tajaey Young

Sponsored by:

Advisors: Nikhil Gupta & Matthew Jensen

FIT

Adam Hill
Brent Allard
Christopher Kocsis
Kartkea Sharma
Matthew Salferhobbs
Rohit Kumar
William Nyffenegger

Motivation

Introduction

To implement distributed engineering by collaborating with Florida Institute of Technology by dividing goals and working effectively

Project Statement

Goal: Design and develop an autonomous ground vehicle capable of competing in the Intelligent Ground Vehicle Competition in June 2017.

COE Goals:

Introduction

- Platform Design
- Power Distribution
- Hardware Integration

- FIT Goals:
 - Perception
 - Object/Color Detection
 - Motion Planning

Justin Daniel

3

Introduction

Original Selected Design

Design Improvements

- Machine time reduction
 - Riveting baseplate
 - Welding Frame
 - Reduction of tapping holes in frame
- Weight Reduction by 15 lbs
 - Decrease thickness of baseplate
- Increase Structural Integrity
 - Stabilize camera pole with cables
 - Additional hollow aluminum tubes support
 - Output shaft support

Design Improvements Continued

Waterproofing

Introduction

- Hydrophobic cloth
- Quick connectors
- Weatherproofing seals
- Component placement One step removal
 - Electronics
 - Battery
 - Motor
 - Isolation of payload

Introduction Platform Design Power Distribution Hardware Integration Future Work

Cooling

Electronics

- Will be cooling the electronics using 5V fans
 - 43.8 Cubic Feet Per minute
- Water Cooled NZXT Kraken X61 280mm All-in-One Liquid Cooling System
 - GPU
 - CPU

Water cooled GPU cooling system

Wind flow with computer fans

Introduction Platform Design Power Distribution Hardware Integration

Budget Breakdown

Future Work

Introduction Platform Design Power Distribution Hardware Integration Future Work

Assembly

Important Factors: Accessibility/ Re-Assembly

- Make necessary component changes
- Swap Parts
- Repairs
- Any other task that would require the robot being disassembled in any way

Fabrication processes include:

- Welding
- Milling
- Water Jetting
- Autoclave Composite Manufacturing
- Vacuum Infusion Process

Water Jet

Carbon Fiber Shell

Side Panels

- Vacuum Infusion Process
- Water-Jet cut into appropriate shapes
- Secure Panels to hollow aluminum frame

How the vacuum infusion process works

Top Lid

- Inverse Mold
- Autoclave Composite Manufacturing

Example of a carbon fiber mold

Power Diagram

- Given a 14.8V battery
- TX1 (5-19.6)V
- myRIO (6-16.6) V
- GPS (5V)
- LIDAR (5V)
- Fans (5V)

Hardware Integration

MyRio

Universal Asynchronous Receiver/ Transmitter

- Intermediary between parallel and serial interfaces
 - Transmit (TX) and Receive (RX) pins
 - Baud rate
- Pros

Introduction

- Multiple resources and sample code
- Most of the hardware uses UART

RabbitMQ Server

• **PonControid Attions** Server

- CarP Publish and Subscribe messages to server
- Robust Alessages, tot it uffinant cation between robot

Hardware Integration

Gantt Chart for Fall Semester 2016

Future Work

- Integrate Motion Planner: SBMPO
- Visit FIT
 - Have a mock course set up
- Setup
 - Zed Camera
 - GPS integration with the controller
 - INS integration
 - Electronics
- Interoperability Protocol

References

- Dudek. "Differential Kinematics and Statics." Advanced Textbooks in Control and Signal Processing Robotics (2010): 105-60. Computational Principles of Mobile Robotics. Web. 05 Oct. 2016.
- Gupta, Nikhil. *Dynamic Modeling and Motion Planning for Robotic Skid-Steered Vehicles*. Diss. Florida State U, 2014. Tallahassee: FSU Digital Library, 2014. *Diginole*. Web. 4 Sept. 2016.
- http://www.nvidia.com/object/jetson-tx1-module.html
- https://www.swiftnav.com/piksi.html
- "Serial Peripheral Interface (SPI)." *Learn at SparkFun Electronics*. N.p., n.d. Web. 14 Nov. 2016. https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi.
- "Serial Communication." *Learn at SparkFun Electronics*. N.p., n.d. Web. 14 Nov. 2016. https://learn.sparkfun.com/tutorials/serial-communication/uarts.
- "I2C." *Learn at SparkFun Electronics*. N.p., n.d. Web. 14 Nov. 2016. https://learn.sparkfun.com/tutorials/i2c.

Questions?

IGVC: Auto – Nav Challenge

The Basic Course

200 ft

IGVC: Auto – Nav Challenge

The Advanced Course

Vehicle Must have

- Object Detection/Collision Avoidance
- Color/Line Detection
- GPS Waypoint Navigation

Power Source

Batteries

- Thunder Power 7700-4SM70
 - 7700mAh 4-Cell/4S 14.8V Magna Series 70C LIPo split w/ interconnect
 - Quantity: 2
 - Specifications:
 - Max Charge: 12C
 - Max Charge Current 92.4A
 - Max Continuous Discharge: 70C
 - Max Continuous Current 539A
 - Max Burst: 140C
 - Max Burst Current 1078A
 - Weight: 780g
 - Price \$300

House of Quality

		Column #	1	2	3	4	5	6	7	8	9	10	11	12
Row #	Weight / Importance	Engineering Characteristics Competition Requirements		Structural Integrity	Affordability	Communication Protocols	Image Processing	Fabrication Time	Computation time	Energy Consumption	Power Distribution	Modular Design	Ventilation	Weight
1	4.0	Durability	2	10	6			5				5		7
2	5.0	Size of Robot		5	4			7		2				10
3	4.0	Localization	1								4	8	2	
4	5.0	Reliability	10	4	1								10	
5	2.0	IOP Challenge												
6	3.0	Speed			7		4							10
7	3.0	Accessibility		6	2			4				10		
8	5.0	Safety	5								7		4	
9	5.0	Motion Planning	1		5	8	10		8	2		6	2	
10	2.0	Innovative Design	4	3	4			2			2	4	1	6
		Score	92	109	109	117	118	71	106	20	51	92	88	120
		Rank	7.0	4.0	5.0	3.0	2.0	10.0	6.0	12.0	11.0	8.0	9.0	1.0

Most Important Characteristics:

COE -

- 2. Structural Integrity
- 3. Affordability

FIT -

- 2. Communication Protocols
- 3. Computation time