

Capacitor Assembly Automation

Team 6:

Marissa Foreit

Kyler Kazmierski

Folaranmi Adenola

Olayinka Oladosu

Sponsor: Mr. Walker

Advisor: Dr. Moore

Professor: Dr. Shih

3/30/2017

Outline

- Introduction and Background Information
- Product Specs
- Problem Statement/Goal Statement
- Current Process
- Improved Process with Updated Operations
- Time Improvements
- Proposed Floor Layout
- Progress Updates, Gantt Chart/Future Work
- Budget Report

Introduction and Background Information

Unison Industries

- Subsidiary of GE
- Special in electrical components for jet engines, ignition systems and generators
- 80% of jet engines are installed with ignition systems produced by Unison Industries
- Capacitor Manufacturing Automation
 - Making a manual process automated in order to reduce assembly time
- Options of fully automatic versus semi automatic
 - Fully automatic requires no operator
 - Semi automatic requires some use of the operator

Product Specs

- 4 individual sections
 - Layer of insulation paper and double sided tape in between
- Insulation material wrapped around whole assembly
- Maximum dimensions: 4.25"H x 2.6"L x 1.38"W

Problem Statement/ Project Goal

Problem Statement

- The current process of assembling capacitors takes approximately 27 min
 - The goal is to reduce this time to 15 min
- The assembly process has multiple steps involved
- Each step has been analyzed in order to choose the best ones to improve with either automation or a new manual process

Project Goal

 Goal Statement: To reduce overall assembly time by adding some automation and updating some of the current manual processes

Current Manual Assembly Steps

- **1.**Select 4 capacitor sections and attach clipped tabs together and verify capacitance is within range. If not select different capacitors to meet capacitance range
- 2.Cut a piece of tape and place between each capacitor section. The clipped tabs must line up on one side. (Form capacitor tabs and solder)
- **3.**Attach and solder wire to clipped tabs and wire to unclipped tabs
- **4**.Assemble sleeving wires
- **5**.Assemble tape over both soldered tabs
- 6.Form safety loop in both wires shown

Current Manual Assembly Steps Con't

7. Wrap a piece of insulation around sides of pack
8. Secure insulation and wires in place using Tape
9. Final Inspection

A. Using verniers, check the following dimensions:
a. 4.25" max, 1.38" max, 2.60" max

B. Visually inspect the following:

a) Correct and complete assembly

b) Damage to wires or assembly

Updated Assembly Process Tape Rolling

- Powered by motor
- Tape (blue) rolls onto individual capacitors
 - Roller (green) rolls behind the tape to ensure tape sticks
- Saves time by:
 - Reducing number of times the layer on the tape needs to be pulled back
 - Guided slots make the cutting process easier and more efficient

Tape Rolling Con't

- After tape is placed on capacitors, operator will peel back sealing layer
- After this, the operator will cut the tape in between the sections
 - Scissors will be guided by grooves in the plate

Tape Rolling to Stacking

FOLARANMI ADENOLA

• Saves time by making the capacitors easier to align

Stacking to Soldering/Attaching Lead Wire

- After stacking, the operator will move the capacitor to the next work station
- At this work station, a second operator will began soldering the tabs, attaching lead wires and forming the safety loops
 - These are intricate processes and will not be updated

Soldering/Attaching Lead Wire to Insulation Paper Wrapping

- After soldering, operator will bring the capacitor to the next work station
- The next operator will then load the capacitor into the paper wrapping machine to begin that process

Paper Wrapping/Tape Wrapping

Figure 13

Figure 14

Figure 15

Paper Wrapping to Dimension Check

- Immediately after wrapping the paper and tape, the operator will unload the capacitor and place it into the gauge block for the final dimensional check
 - Maximum dimensions are 1.38" x 2.60" x 4.25"
- Saves time by checking all dimensions at once

Estimated Times

Assembly Step	Current Time	Improved Time
Tape Roller	2 min 15 sec	35 sec
Stacking	25 sec	12 SEC
Paper Wrapping	2 min 50 sec	1 min 25 sec
Dimension Check	1 min 4 sec	15 sec

Proposed Lean Floor Layout

Progress Updates

- Assembly for the tape roller has begun
- L-Gauge and Block Gauge have been created and are ready for use
- Parts for the paper wrapping device are still in the shop

Gantt Chart

			Jan					Feb					Ma
lask Name	Jan 1	Jan 8	Jan 15	Jan 22	Ja	n 29	Feb 5	Feb 12	Feb 19	Fet	o 26 🛛 Mar	5 M	ar 12
	ା ପ୍	⊕, 7≟											
Design for Manufacturing		-						Design for I	Manufacturii	ng			
3D print smaller parts				3D	print	smallei	r parts						
Finalize prints for machine shop				Fi	nalize	prints	for machin	e shop					
Submit prints to machine shop			1					Submit print	ts to machin	e shop)		
Order additional materials needed for assembly							Order addit	ional materia	als needed f	or ass	embly		
Assembling Prototypes			1				-		Assembling	Protot	ypes		
Tape Roller								Тар	e Roller				
Stacking			1					Stackir	ng				
Wrapping Mechanism			1						Wrapping N	lechan	ism		
Dimensional Check								Dimen	sional Chec	k			
Testing Prototypes			1								Testing P	rototypes	s
Tape Roller										T	ape Roller		
Stacking			1						Sta	icking			
Wrapping Mechanism											Wrapping	Mechan	nism
Dimensional Check									Din	nensio	nal Check		

Future Work

Pre-Completion

- Finish assembling prototypes for tape roller and wrapping design
 - Test prototypes
- Make any last minute changes
- Prepare for final presentation

Post Completion

- Add motors to tape roller and wrapping design
- Possibly automate the stacking design with a robot
- Update the remaining assembly steps

Current Budget Report

ltem	Cost
Guide Rails	\$89
Track Rollers	\$63.84
Posts	\$18.84
Таре	\$37.15
Base Plate	\$144.20
Paper Roll Washers	\$64.81
Aluminum Bars	\$35.67
Aluminum Rods	\$42.31
Total	\$495.82
Remaining	\$1504.18

Summary

- Designs have been completed
 - Parts are either finished or currently in the shop
- All 4 designs have reduced assembly time during simulation tests
 - Prototype testing has begun for tape roller, L-gauge and the gauge block
- A floor layout has been created to ensure a lean manufacturing process
- The next steps are to finish building and testing the prototypes

References

Kevin Walker, Assembly Steps Handout

