Capacitor Assembly Automation

Team 6: Marissa Foreit Kyler Kazmierski Folaranmi Adenola Olayinka Oladosu Sponsor: Mr. Walker Advisor: Dr. Moore **Professor: Dr. Gupta** 11/17/2016

Presentation Overview

Background information
Project needs and goals
Assembly steps/breakdown of time for each step
Prototype designs/challenges
Future work

Background Information

Unison Industries

- Subsidiary of GE
- Specialize in electrical components for jet engines, ignition systems and generators
- 80% of jet engines are installed with ignition systems produced by Unison Industries
- Capacitors store energy as an electrostatic field
- Capacitor Assembly Automation
 - Making a manual process automated in order to reduce assembly time
- Options of fully automatic versus semi automatic
 - Fully automatic requires no operator
 - Semi automatic requires some use of the operator

Project Needs

 Need Statement: The project requires an automated system to be developed in order to assemble the capacitors. The capacitors consist of the following parts:

- 4 individual capacitor sections that become stacked together
- A layer of tape and insulator paper between each section
- Electrical tabs for connections
- Lead wires
- Insulation material wrapped around the assembly

Figure 1: Individual capacitors

Project Goals

 Goal Statement: Design and develop an automated process in order to improve the manufacturing and assembly of the capacitor

Figure 2: Assembled capacitor: 1.38" x2.6" x 4.25"

Marissa Foreit

Updated Objectives

- Finalize which steps will be automated
- Develop methods to improve steps that will have automation added to them
- Reduce overall assembly time
- Develop working prototype

Product Specs

- 4 individual sections
 - Layer of insulation paper and double sided tape in between
- Electrical tabs soldered together
- Insulation material wrapped around whole thing
- Dimensions: 4.25"H x 2.6"L x 1.38"W

Figure 3: Induvial Capacitor 2.6" x 4.25"

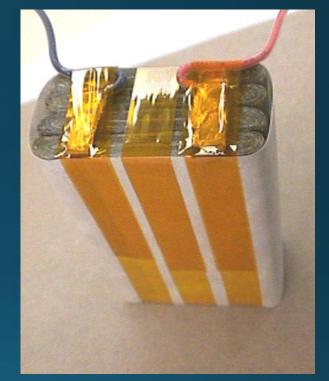


Figure 4: Assembled Capacitor 1.38" x 2.6" x 4.25"

Marissa Foreit

Assembly Steps

- Select 4 capacitor sections and attach clipped tabs together and verify capacitance is within range. If not select different capacitors to meet capacitance range
- 2. Cut a piece of tape and place between each capacitor section. The clipped tabs must line up on one side.
- 3. Form capacitor tabs and solder
- 4. Attach and solder wire to clipped tabs and wire to unclipped tabs

Assembly Steps Con't

- 5. Assemble sleeving wires
- 6. Assemble tape over both soldered tabs
- 7. Form safety loop in both wires shown
- 8. Wrap an piece of insulation around sides of pack
- 9. Secure insulation and wires in place using Tape
- 10. Final Inspection
 - A. Using Verniers, check the following dimensions:
 - i. 4.25" max, 1.38" max, 2.60" max
 - **B.** Visually inspect the following:
 - i. Correct and complete assembly
 - ii. Damage to wires or assembly

Estimated Breakdown of Time

- Placing tape on capacitors: 1 min 43 sec
- Stacking: 31 sec
- Soldering: N/A
- Attaching lead wires: N/A
- Wrapping insulation paper: 2 min
- 3 Pieces of tape around assembled capacitors: 52 secs
 Dimension Check: 1 min 4 sec

Step 1 Design: Tape Roller

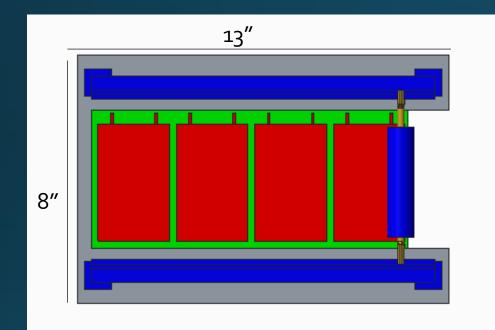


Figure 5: Top view of Tape Roller

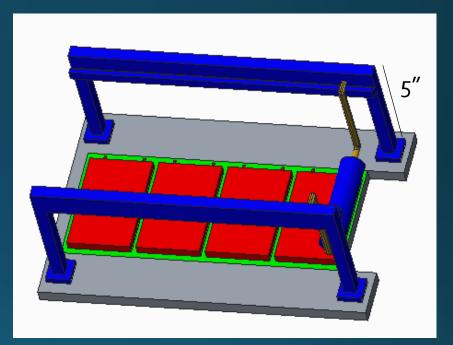


Figure 6: Angled View of Tape Roller

Step 1 Con't

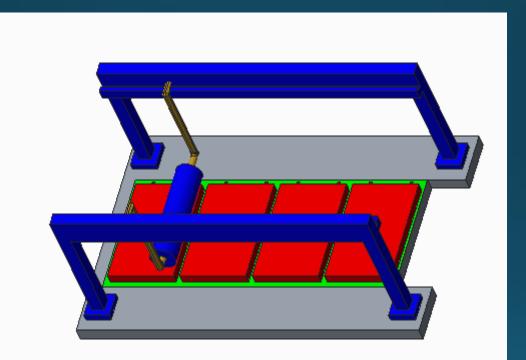
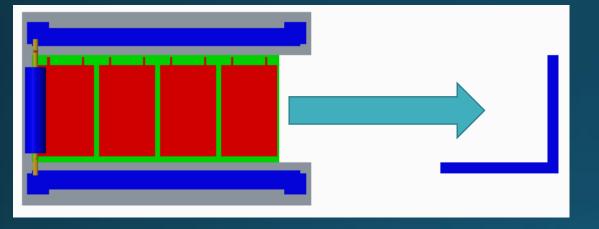


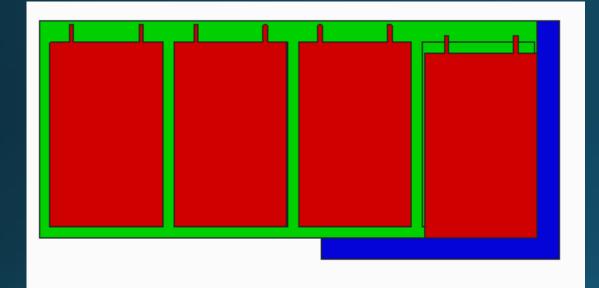
Figure 7: Tape Roller in Process of rolling

Possible Challenges

- Initial placement of the tape
- Tape doesn't properly dispense onto capacitors
- Motor failure
- Track or roller arms could wear out over time

Step 2 Design: Stacking




Figure 8: Top view of Tape Roller with L-Gauge

 6"

Figure 9: Top View of Plate in L-Gauge

Marissa Foreit

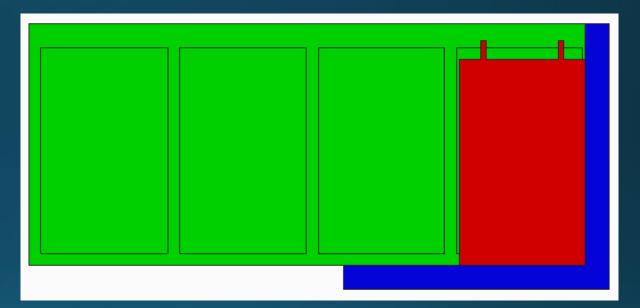


Figure 10: First capacitor section being placed into L-Gauge Figure 11: All 4 sections stacked in L-Gauge

Marissa Foreit

Step 2 Con't

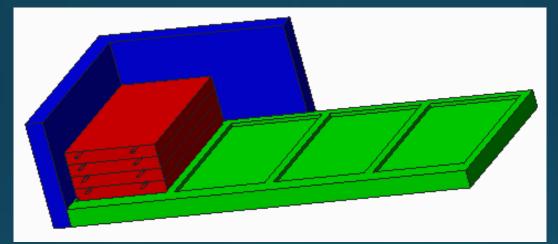


Figure 12: Angled View of Stacked Capacitors

Alternative for Stacking Process

"Pick and Place" Robot

- Picks up each part using claw-like mechanism
- Uses Pneumatic system
- Computer programed
- Potential to be used in future work

Figure 13: "Pick and Place" Robot

Possible Challenges

Manual Process

- Might not be as quick as a robot
- The L-Gauge might wear out over time

"Pick and Place" Robot

- Programming
- Robot breaks
- Parts might slip out of the claw
- Acquisition cost: \$2,000-\$8,000

Wrapping Design

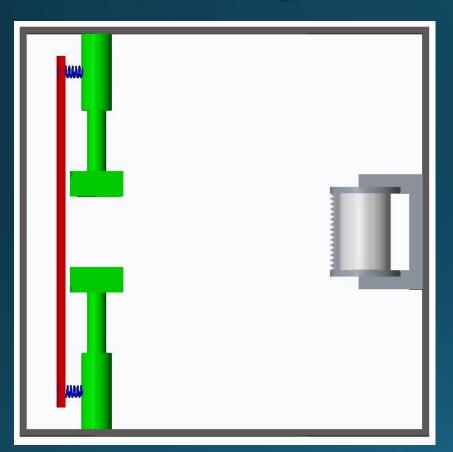


Figure 14: Wrapping machine without capacitor assembly

Figure 15: Wrapping machine with capacitor assembly and attached insulation paper

Kyler Kazmierski

Wrapping Con't

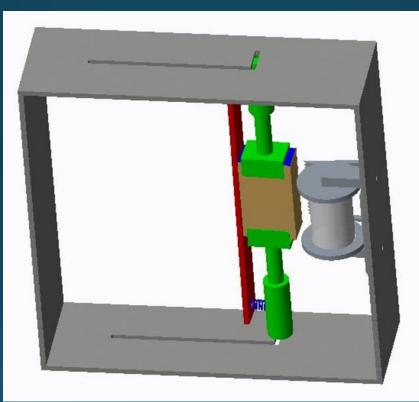


Figure 16: Wrapped capacitor assembly moving backwards to cut tape and finish wrapping process

Kyler Kazmierski

Possible Challenges

- The assembly has to be loaded with the insulation paper attached with double-sided tape to the front of the assembly
- Currently the tape must be manually attached to the insulation paper before the wrapping is started
- Tape roll needs to be kept at a near constant tension throughout the life of the tape roll so the insulation paper is wrapped tightly
- Needs to be programmed

Steps Not Being Automated

- Soldering of metal tabs
 - Certified process
- Attaching lead wires
- Stacking process
 - Created manual process
- Dimensional Check
 - Created manual process

Dimension Check

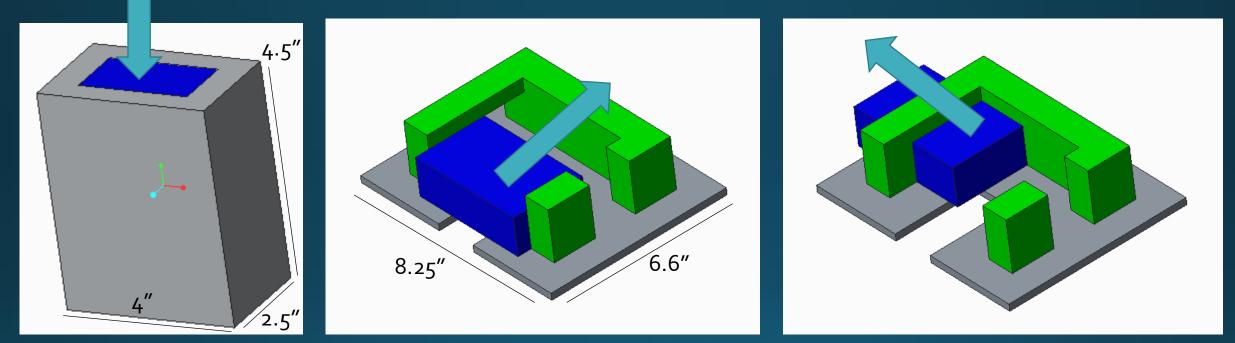


Figure 17: Design 1 for Dimension Check Figure 18: Design 2 for Dimension Check

Figure 19: Design 2 for Dimension Check

Decision Matrix

Parameters	Design 1	Design 2
Cost	5	3
Manufacturability	5	3
Efficiency	4	4
Ease of Use	3	4
Total	17	14

 Table 1: Decision Matrix for Dimension Check

Design 1 scored better than Design 2

 Design 2 is still a potential option if issues arise with Design 1 later on

Gantt Chart

Task Name		Sep			Oct			Nov					Dec				
	Start Date	Sep II		Sep 25	5 Oct 2	Oct 9	Oct 16	Oct 23	Oct 30	Nov 6	Nov 1	3 Nov 20	Nov	27 Dec 4	Dec 11	Dec 18	D
		0 Q	. ⊕, 7≟												1		
Planning	09/13/16	·	P	lanning													
Schedule Biweekly Meetings	09/13/16	5	chedule Biw	/eekly Mee	tings												
Agree on Scope with Sponsor	09/16/16		A	gree on So	ope with S	ponsor											
Concept Generation	09/22/16											Concept G	eneratio	'n			
Background Research	09/22/16				E	ackground R	esearch										
Conceptual Design	09/22/16					Co	onceptual De	sign									
Trip to Unison Industries	10/21/16							Trip to Uniso	n Industrie	s							
Detailed Design	10/21/16											Detailed D	esign				
Design Selection	11/01/16								/					Design Selectio	n		
CAD Drawings	11/01/16													CAD Drawings			
Risk Analysis	11/15/16											Risk Analy	sis				
Propose Designs to Sponsor	11/12/16										Propose	e Designs to	Sponsor				
Pick Final Design	11/29/16													Pick Final Desig	IN		
Procurement	11/30/16														Pro	curement	
Bill of Materials	11/30/16													Bill of	Materials		
Purchase Orders	12/06/16														Pur	chase Orde	rs

Table 2: Gantt Chart

Future Work

- Create design for wrapping tape on the assembled capacitor
- Explore the option of adding the robot into the stacking step
- Finalize designs and have our sponsor approve them
 - Order material and begin building prototype
- Test the prototype and make any changes as needed



Figure 20: Assembled Capacitor 1.38" x 2.6" x 4.25"

Conclusion

- Created different designs to automate/speed up the following steps:
 - Placing tape on individual capacitors
 - Stacking the capacitors
 - Wrapping insulation paper around the capacitors

 Finalized which dimension check method will be using

References

Kevin Walker, Assembly Steps Handout

 FANUC AUTHORIZED INTEGRATOR: Robots Workx a Scott Company Retrieved from https://www.robots.com/fanuc/all

Questions?