# Electric Vehicle Optimization Team 2



### MEMBERS: SETH REJDA, HAFS SAKKA, TAOFEEK AKINTOLA, KHALED FARHAT, SEAN CASEY, LUKE MARSHALL

ADVISER: DR. SEUNGYONG HAHN

SPONSOR: DR. MICHAEL HAYS

### Overview

### • Cummins, Inc. & Electrical Power System Performance

- Advanced Batteries
- Upgraded Electronics
- Gas Generators
- Non-Traditional Power Adding Methods

### • Tasked with extending the range of a electric vehicle

- Tomberlin 48V Electric Low Speed Vehicle
- 6 8V Lead/Acid Batteries
- Range: 30+ miles
- Max Speed: 25mph
- Rated for 1700 lbs. (incl. vehicle weight)



Figure 1. Tomberlin Electric Vehicle

### Overview

#### **Goal Statement**

"To increase the range of the electric vehicle by at least 15% through non-traditional power adders while minimizing the reduction in acceleration or top speed."

### **Objectives**

- Document current vehicle performance
- Research variety of possible power adders
- Procure/incorporate additional sources
- Reconfigure overall vehicle circuitry
- Increase vehicle range by 15%

#### **Constraints**

- Fuel supply cannot be increased
- Vehicle must be able to carry 4 people
- Top speed cannot be reduced by more than 10%
- Acceleration cannot be reduced by more than 10%

## House of Quality (HOQ)

| CREC        | Efficiency | Safety | Durability | Power | Weight |
|-------------|------------|--------|------------|-------|--------|
| Reliability | 2          | 3      | 4          | 1     | 0      |
| Performance | 5          | 1      | 2          | 5     | 2      |
| Cost        | 4          | 2      | 4          | 4     | 0      |
| Capacity    | 1          | 1      | 2          | 1     | 2      |
| Range       | 5          | 1      | 3          | 5     | 3      |
| Total       | 17         | 8      | 15         | 16    | 7      |
| Rank        | 1          | 4      | 3          | 2     | 5      |

+

+

+

\_

Figure 2. House of Quality

### Background

### Last Year's Progress

- Similarities/Differences
  - Different constraints/goal
- Timeline
  - Due to the difference in our main objectives, our priorities were also different
- How they started
  - Cart was in its original factory conditions
  - Generator was given to last years team free of charge
  - Ordered new set of batteries for the cart



Figure 3. Last Year's Budget Allocation

# Background (cont.)

### **Generator Requirements**

- Can output a minimum of 1,600 Watts
- Size must be less than: 685mm×360mm×400mm
- Must operate at freezing temperature
- Lightweight/Inexpensive

### **Generator Specifications (QG2800)**

- Output 2,800 watts
- Size: 560 mm × 415mm × 325mm
- Able to operate at -29°C
- Mass is 56.7 kg
- Uses Natural gas as its fuel source



Figure 4. Cummins QG2800 Generator

# Background (cont.)

### **Generator Location**

- Rear side of the cart, set behind the rear seats in recessed region
- Used hot rolled steal with 90° angle to reinforce

### How They Left It

- Generator runs while batteries are fully charged
- Wires left un labeled and unmounted
- Code not running as intended

#### How to Improve

- Operating generator by using alternative methods
- Label and permanently mount wires



Figure 5. Location of Generator



Figure 6. Circuit Condition

### System Diagram



# Design Options

### **Photovoltaics**

- Range increase of up to 25%
- Easy installation
- Available in 36/48/72 Volt setup producing 100-360 Watts
- Size/Dimensions
- Free energy directly from sunlight





Figure 8. EV Solar Roof Example

### Design Options

#### **Regenerative Breaking**

• Regenerative braking is an energy recovering mechanism that converts kinetic energy into a form of electrical energy that can be either used immediately or stored until needed.

- Maximize performance by allowing power back into the battery pack.
- The control system regulates the amount of current going to the batteries.
- Every regenerative braking system consists of an actuator and an energy storage device.
- Reduces brake wear



## Design Options

### **Geographic Regeneration**

- Autonomous power cutoff based on pitch of golf cart
- Converting kinetic energy into electrical energy
- Once back to level, normal operation instantly resumes



• Having a fully electric motor allows this idea to be conveniently achievable Figure 8. Vehicle Descending





Figure 9. Regenerating Operation

### Preliminary Decision Matrix

|             | Solar | Regenerative Breaking | Geographic Regenerater |
|-------------|-------|-----------------------|------------------------|
| Cost        |       |                       |                        |
| Weight      |       |                       |                        |
| Performance |       |                       |                        |
| Total       |       |                       |                        |

## Project Planning

| CANTT 2016 |                         |            |          |           |         |          |          |  |  |
|------------|-------------------------|------------|----------|-----------|---------|----------|----------|--|--|
| Name       | project                 | Begin date | End date | September | October | November | December |  |  |
|            | Code of Conduct Report  | 9/15/16    | 9/16/16  |           |         |          |          |  |  |
| 0          | General Research        | 9/5/16     | 10/7/16  |           |         |          |          |  |  |
| 0          | Needs Assesment Draft   | 9/20/16    | 9/30/16  |           | 1       |          |          |  |  |
| 0          | Midterm 1 Presentation  | 10/7/16    | 10/14/16 |           |         |          |          |  |  |
| 0          | Initial Web Page Design | 10/14/16   | 10/21/16 |           |         |          |          |  |  |
| 0          | Peer Evaluations        | 10/21/16   | 10/21/16 |           |         |          |          |  |  |
| 0          | Document Vehicle Perfo  | 10/24/16   | 11/10/16 |           |         |          |          |  |  |
| 0          | Midterm 2 Presentation  | 11/1/16    | 11/18/16 |           |         |          |          |  |  |
| 0          | Peer Evaluations        | 11/17/16   | 11/18/16 |           |         |          |          |  |  |
| 0          | Ordering Components     | 11/10/16   | 11/18/16 |           |         |          |          |  |  |
| 0          | Wait for Parts          | 11/21/16   | 12/20/16 |           |         |          |          |  |  |
| 0          | Final Web Page Design   | 10/20/16   | 11/22/16 |           |         |          |          |  |  |
| 0          | Poster Presentation     | 11/21/16   | 12/1/16  |           |         |          |          |  |  |
| 0          | Final Report            | 11/18/16   | 12/5/16  |           |         |          |          |  |  |

Figure 11. Gantt Chart