Super Seal: Development of a Robust 2nd Stage Oil Sealing Device for Heavy Duty Engines.

Sponsor: Cummins Inc., Liaison Engineer - Terry ShawFaculty Advisor: Dr. William OatesCourse Instructor: Dr. Nikhil Gupta

Team 1 Members:

Christian Milione Kyle Brooks Jonathan Strickland Olaniyi Ogunbanwo

Midterm Presentation 2 November 17, 2016

Cummins' Heavy Duty Truck engine, the ISX 15 @ 15 Liters, 600 HP

Presentation Overview

Project Review

- Background Information
- Updates to Project Scope

Seal Design Selection

- Design Pro/Con Matrix
- Foundation of Design
- Seal Concept Selection & Basic Visualization

Relevant Formulas

- Challenges
- Project Schedule
- Conclusion

Presenter: Olaniyi Ogunbanwo

Project Background

What's The Problem?

- Motor oil is repeatedly leaking past the rear crankshaft seal.
 - Failed seal¹
 - Material fluctuations due to thermal transients

Why Do We Care?

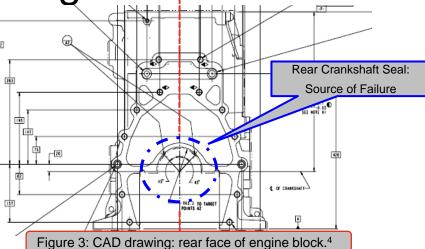
- Cost
- Evolution of Customer Perceptions

Figure 1: Depiction of rear crank seal leaking oil.²

Figure 2: Cummins' newest engine, the Hedgehog @ 95 Liters, 4500 HP Cost for crank seal replacement: \$21,000.³

Presenter: Olaniyi Ogunbanwo

Project Scope



 Design a device to capture leaking oil from a rotating test crankshaft and deposit it into a reservoir so that it can be reintroduced to the crankcase. Additionally, a test rig must be fabricated in order to assess the functionality of the design.

Special Consideration

- More specifically:
 - Scope of project is to primarily demonstrate functionality/performance of design solution.
 - NOT to demonstrate life capabilities of design solution.

Concept Design Selection

Additional Secondary Contact Seal		Recollection	Through A Vacuum	Pressure Ca	Centrifugal Pressure Seal				
(current	one being used/size variant)								
PRO	CON	PRO	CON	PRO	CON	PRO	CON		
n production	Fail due to dry sliding	Optimal Re-Capture	No vacuum source	Prevents Leakage	No PSI source	Non-Contact	No Sealing Stopped		
Easy to use	If lubed, fail w/ primary seal		Dry Sliding Seal Reg'd	Favorable PSI Gradient	Dry Sliding Seal Reg'd	Low Friction	Size Constraints?		
	Envelope too big		Primary seal distortion		Primary Seal distortion	+ Eff vs. Labyrinth	+ Cost		
	Copying failure				What if more oil gets out?				
			d Laburinth	Hybrid Laburinth + Co	striftung Dressure Cool	Mour Dr	New Primary Seal		
	Labyrinth	Hybri	d Labyrinth	Hybrid Labyrinti + Ce	ntrifugal Pressure Seal	New Pr	imary Seal		
PRO	Labyrinth CON	PRO	CON	PRO	CON	PRO	CON		
PRO Non-Contact									
	CON	PRO	CON	PRO	CON	PRO Nano-Composites for	CON		

Presenter: Christian Milione

Figure 4: Matrix of potential solutions; all-in-one comparison.

Concept Design Selection

Foundation of Design

- Pressurize cavity behind rear main seal
 - Aids in a solution to the root cause of the problem = Best place to start

Drawbacks	Considerations	
No Source of Pressure	All Cummins Engines Are Turbocharged	
Potential Primary Seal Distortion	Regulate Air Pressure to Mitigate	
Control Of Oil That Does Leak	Careful Placement of Pressure Introduction Point	Idea(A)
Air Seal Needed To Maintain Pressure Gradient	Do Not Need An Absolute Seal (e.g. House Heater)	· · · · · · · · · · · · · · · · · · ·
Table 1: Considerations needed	for a cavity pressurization approach.	

6

Presenter: Christian Milione

Seal Design Selection

Previous Seal Considerations

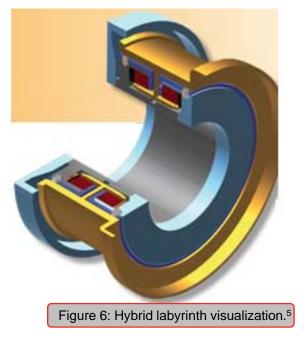
Engineering	Sealing Options									
Characteristics	Labyrinth	Hybrid Labyrinth	Centrifugal Pressure Seal	Secondary Crankshaft Seal						
Efficiency	1	2	2	1						
Durability	1	2	2	0						
Size	1	1	1	1						
Total	3	5	5	2						

Figure 5: Pugh Matrix of different sealing options for an oil capturing device.

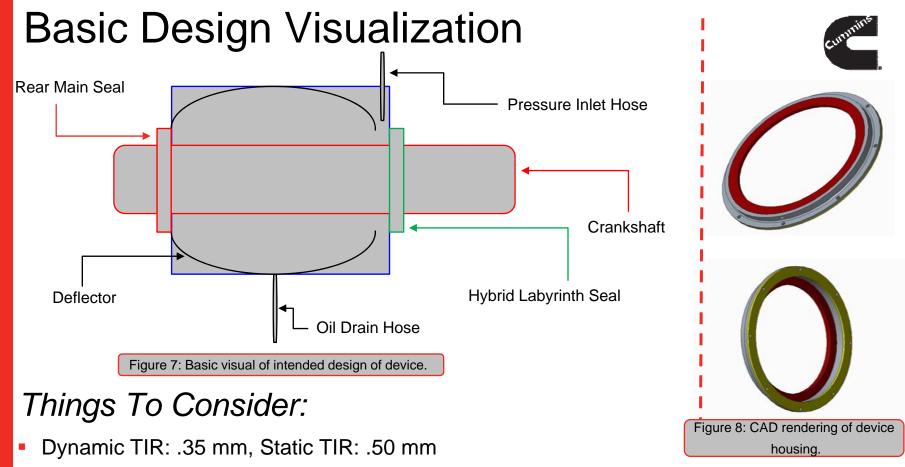
- Important Note: both the hybrid labyrinth and centrifugal pressure seal failed previous selection process.
- Scope has changed!

Presenter: Christian Milione

Seal Design Selection



How to Maintain Pressurized Area Behind Main Seal?


Implementation of a Hybrid Labyrinth Seal

Why?

- Non-Contact Element:
 - Grooves designed for a tortuous path for fluid
 - Provides a seal when the shaft is rotating
- Contact Element:
 - Provides a seal when the shaft is not rotating
 - Contact elements lifts due to centrifugal force during operation

Presenter: Christian Milione

- Ensure seal tolerances to prevent a crash; explore PTFE labyrinth seal for malleability to absorb.

Presenter: Christian Milione


» KACO FRed Engine Seal⁶

Formulas

- Air Leak Rate⁷:
 - Ideal Gas Law P * V = n * R * T
 - n, R and T are constant \longrightarrow $P_1 * V_1 = P_2 * V_2$
 - Solving for $\triangle V$ / time = Leak Rate
- Volume of Chamber: Volume of yellow area extruded around shaft
 - $V = 753.6 \, cm^3$
- Pressurized Air Flow Rate = Area * Velocity

• Power⁷:
$$P = \frac{\gamma * Q * P_1}{\gamma - 1} \left[\left(\frac{P_2}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]$$

- Variable Speed Elec. Motor
 - Linked to 2-Speed Belt Pulley System
- Test Shaft (4140 Steel)
 - 165mm Only In Enclosure
- Air Relief Valve
- Shaft Bearings
- Oil Heater
- Air Regulator For psi Feed
- Feed/Drain Lines
- Stand/Base Plate

Presenter: Jonathan Strickland

Challenges

Sealing

- Volume of air entering chamber exceeds volume of air exiting through seal
 Otherwise, entire concept fails
- Acquisition of a malleable and resistant hybrid labyrinth seal
 Aid in the prevention of crash

Space

Tight tolerances on spatial availability for device.
 Dynamic TIR = 0.35mm, Static TIR = .50mm

Test Rig

- Ensure design and BOM is finalized on schedule considering setbacks experienced.

Time

- Make up lost time due to unanticipated obstacles concerning a sealing solution

Presenter: Jonathan Strickland

Project Schedule

Fall 2016 Gantt Chart															
Planned: Actual:		September			October				November				December		
	9/5	9/12	9/19	9/26	10/3	10/10	10/17	10/24	10/31	11/7	11/14	11/21	11/28	12/5	12/12
Task															
General Research															
Needs Assessment															
Market Research															
Conceptual Design Planning															
Test Rig Concept Generation															
Project Scope Finalization															
Sealing Solution Selection										_	_				
CAD Renderings															
Concept Evaluation											_				
Conceptual Design Finalization											_				
Final Report															
BOM, Issue PO's/Order Parts															

Conclusion

Project Goal:

Develop a device to capture oil and increase overall robustness of crankshaft seal. Prove
effectiveness of concept through a fabricated test rig operated at sponsor designated
parameters.

Current Obstacles Hindering Progress:

- Limited space, such tight tolerances
- Yet to find a malleable hybrid labyrinth seal
 - Without one, possibility of a system crash due to tight tolerances

What's Next?

- Identify and select which hybrid labyrinth seal to be implemented
- Finish test rig design; calculations and component selection
- Create a Bill of Materials to begin ordering parts

References

- I. "Symptoms of a Bad or Failing Crankshaft Seal." Your Mechanic. N.p., n.d. Web. 28 Sept. 2016.
- 2. Pawlik, Bernie. "2004 Lexus RX330: Front Crankshaft Seal And Timing Belt Replacement." 2004 Lexus RX330: Crankshaft Seal, Timing Belt Replacement. N.p., 27 Sept. 2013. Web. 19 Oct. 2016
- 3. Shaw, Terry. *Project 1*. N.p.: Cummins Inc., n.d. PPT.
- 4. Shaw, Terry. Cummins Technical Drawings, ISX15.
- 5. Jun 1, 2012 Michael E. Gamache President The Carlyle Johnson Machine Co. Bolton, Conn. | Motion Sy. "Engineering a Better Noncontact Seal." *Machine Design*. N.p., n.d. Web. 19 Oct. 2016.
- 6. . "FRed Engine Seal." Kaco.de. Kaco, n.d. Web. 16 Nov. 2016
- 7. "Centrifugal Seals vs. Labyrinth." Centrifugal Seals vs. Mechanical Shaft Seals | Centrifugal Seal | Centritec Seals. Centritec Seals, n.d. Web. 16 Nov. 2016.
- 8. Angela A. Pitenis (1), Kathryn L. Harris (2), Christopher P. Junk (3), Gregory S. Blackman (3), W. Gregory Sawyer (1)(2), and Brandon A. Krick (4). "Ultralow Wear PTFE and Alumina Composites: It Is All About Tribochemis." *Springer*. Springer US, n.d. Web. 16 Nov. 2016.
- 9. "Compressor Power and Efficiency Equations." *Enggcyclopedia*. Enggcyclopedia, n.d. Web. 16 Nov. 2016.
- 10.. OmniLip PTFE Rotary Shaft Seals Product Catalog, Saint-Gobain Performance Plastics (n.d.): n. pag. Seals.saint-gobain. OmniLip.
 Web. 17 Nov. 2016

Presenter: Jonathan Strickland

Questions?