Super Seal: Development of a Robust 2nd Stage Oil Sealing Device for Heavy Duty Engines.

Sponsor: Cummins Inc., Liaison Engineer - Terry ShawFaculty Advisor: Dr. William OatesCourse Instructor: Dr. Nikhil Gupta

Team 1 Members:

Christian Milione Kyle Brooks Jonathan Strickland Olaniyi Ogunbanwo

Midterm Presentation 1 October 20, 2016

Cummins' Heavy Duty Truck engine, the ISX 15 @ 15 Liters, 600 HP

Presentation Overview

Project Background

- Background Information
- Project Scope

Concept Generation

- Cummins Technical Drawings
- Macroscopic Ideation
- House of Quality
- Conceptual Sealing Design

Future Considerations

- Challenges
- Projected Schedule

Conclusion

Project Background

What's The Problem?

- Motor oil is repeatedly leaking past the rear crankshaft seal.
 - Liquid Oil
 - Oil Vapor

Research Dictates:

- "Go to" cause of an oil leak is a failed gasket or seal.¹
- Material fluctuations due to thermal transients.

Figure 1: Depiction of rear crank seal leaking oil.²

Project Background

Driving Factors For Solution:

Cost

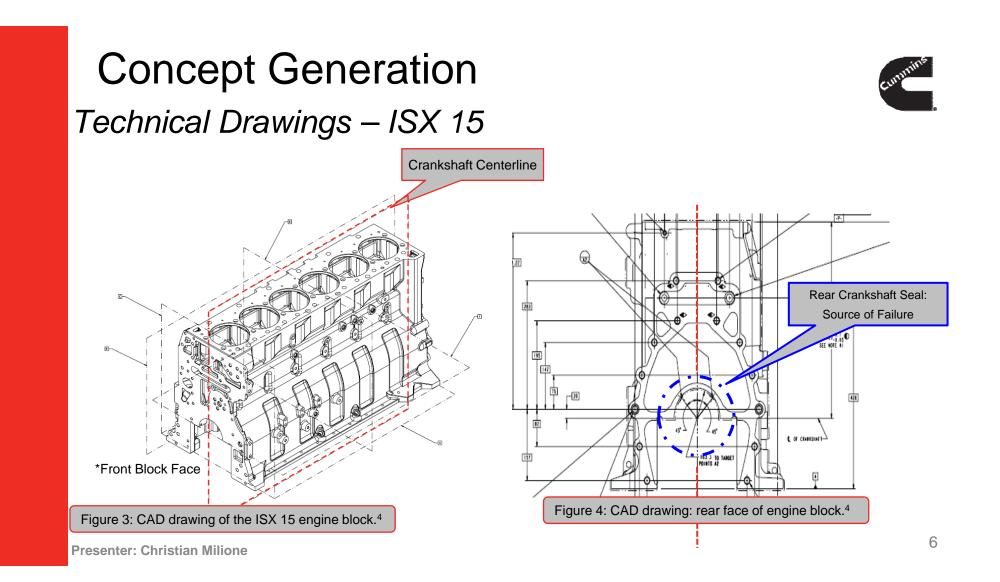
- Market demands for increased life before engine overhaul
 - ISX15 target: 30,000 hours of life
 - ~3.5 years of continuous operation



Figure 2: Cummins' newest engine, the Hedgehog @ 95 Liters, 4500 HP Cost for crank seal replacement: \$21,000.³

- Increased Customer Sensitivity
 - Evolving perceptions of part 'failure'

Project Scope


Goal Statement

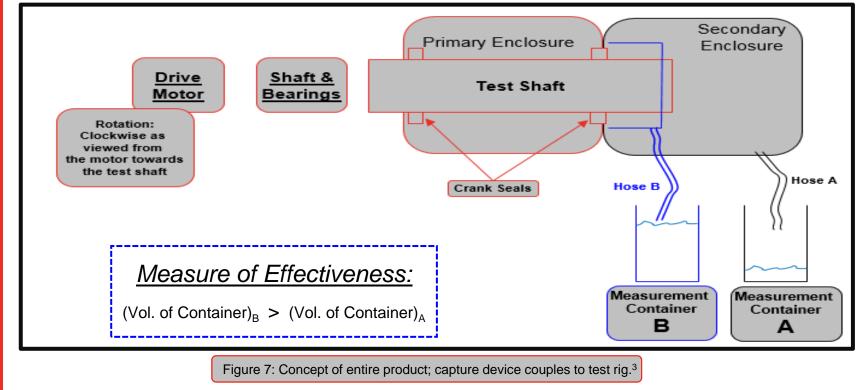
 Design a device to capture leaking oil from a rotating test crankshaft and deposit it into a reservoir so that is can be reintroduced to the engine. Additionally, a test rig must be fabricated in order to assess the functionality of the design.

Objectives

- Design a capturing device to collect oil.
- Design a rig that can be used to test the recapture device.
- Determine feasibility of each design with technical proof.

- Construct the oil recapture device and test rig.
- Perform the 24-hour trial, and assess overall project success.

Technical Drawings – ISX 15 Excerpt from Crank Seal Drawing Q Flywheel Housing Flywheel R Oil Side of Seal Air Side of Seal Area available for NΡ leak capture hardware NIEW 12/11/21/11 P max = R + 10 mm, +5 mm desired ÷ Crankshaft Q max = 25 mm, 10 desired Outer Diameter 27-2-5-54 27-2-54 00.201 0 01 900P R Max = 15 mm, 10 desired æ 10 I I I I -• 100VL Crankshaft Centerline Figure 5: Cross section of rear crankshaft seal assembly.³ **Presenter: Christian Milione**


Concept Generation

cummins.

Concept Generation

Macroscopic Ideation

Presenter: Christian Milione

House of Quality

Super Seal: House of Quality

Roof Correlations					
+ + Strong Positive					
+	Positive				
-	Negative				
	Strong Negative				

cummins	
	e

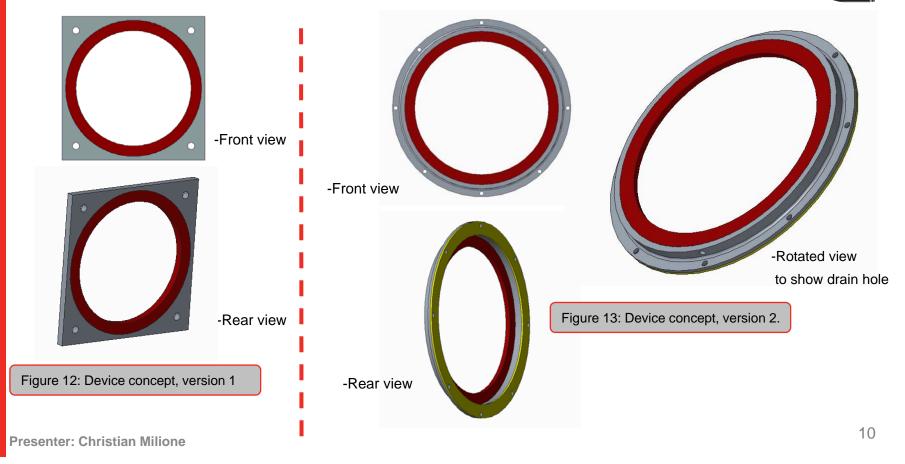
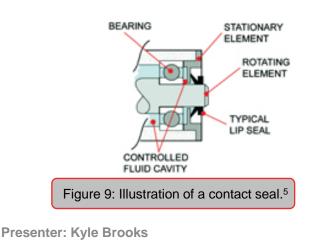

11001 001	Telacions					\sim		
++	Strong Positive]		/	< - >	< >		
+	Positive]			\sim	\sim		
-	Negative]						
	Strong Negative			< >	< >	< + >	< >	~
		-		\sim	\sim	\sim	\sim	
			< -	- × -	· × -	\times	\times	• >
			$\langle \ $	$/$ \setminus		$/$ \setminus		$<$ \smallsetminus
					Engineering C	haracteristics		
			Size	Cost	Durability	Weight	Versitility	Efficiency
Customer R	equirements	C.I. (1-5)						
Douise / Pig C	perate Safely	5				3		1
Device/Rig C	perate salely	5				5	Versitility Efficiency 2 2 3 3 3 3 Correlation	1
Device Fits S	ize Constraint	4	5	3		3	2	3
			<u> </u>				-	<u> </u>
	ects More Oil	5	2		3		2	5
	roundings		-		<u> </u>		-	
	perates in	3		3	4		3	3
	" Regimes	<u> </u>						<u> </u>
	cation of Test	5	3	4	2		3	
	lig		<u> </u>		-			
	Oil Can be	3	4	3	5		3	4
Returned	Returned Into Engine		-				_	-
				1 - Low	Correlation	5 - High Cor	relation	
Calcu	lations	Score	57	50	52	27	51	63
Calcu		Rank	2	5	3	6	4	1

Figure 6: Super Seal House of Quality.

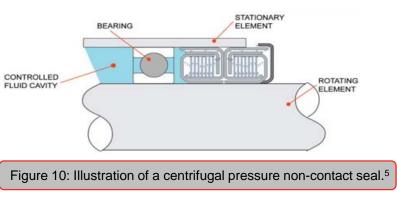
Presenter: Christian Milione

Initial CAD Renderings



Seal Comparison

Contact Seals:


- Short lifespan.
- Limited operating speeds.
- Controlled fluid cavity isolated from environment.

Non-contact Seals:

- Longer lifespan when compared to contact seals.
- Operable at various speeds.
- Controlled fluid cavity is partially open to environment in some stages.

Pugh Matrix

Engineering Characteristics	Sealing Options									
	Labyrinth	Hybrid Labyrinth	Centrifugal Pressure Seal	Secondary Crankshaft Seal						
Efficiency	1	2	2	1						
Durability	1	2	2	0						
Size	1	1	1	1						
Total	3	5	5	2						

Figure 11: Pugh Matrix of different sealing options for an oil capturing device.

Presenter: Kyle Brooks

Challenges

- Each sealing method explored theoretically fails some customer requirement.
- No "1" solution.

 \odot Solution = Idea(A) + Idea(B) + ...

Innovation

Sealing

- Use of innovative design techniques/materials.
- "Exciters" in addition to "expected"

Space

- Tight tolerances on spatial availability for device.
 - [®]Keep in mind the customer's customer.

Test Rig

- Design and fabrication of a viable testing platform.

Presenter: Kyle Brooks

Schedule

Fall 2016 Gantt Chart					-					-						
Planned: Actual:	September		October			November			December							
	9/5	9/12	9/19	9/26	10/3	10/10	10/17	10/24	10/31	11/7	11/14	11/21	11/28	12/5	12/12	12/19
Task																
General Research																
Needs Assessment																
Market Research		_			_											
Conceptual Design Planning							<u>i</u>									
Test Rig Concept Generation																
Project Scope Finalized																
Sealing Solution Selection																
CAD Renderings																
Concept Evaluation					\sim											
Conceptual Design Finalization		1						1								
Final Report						•										
BOM, Issue PO's/Order Parts	V					s been s										
		> re				el as th		/e	>							
•	<		have		cipateo	d result	s for a									
		>		•	Joiution				>							
	~			\sim	\sim	1										, A
Presenter: Kyle Brooks				~												14

Conclusion

Project Goal:

 Develop a device to capture oil and increase overall robustness of crankshaft seal. Prove effectiveness of concept through a fabricated test rig operated at sponsor designated parameters.

Current Obstacles Hindering Progress:

- Effective seal countermeasure
- Spatial availability

What's Next?

- Select viable sealing option
- Concurrently engineer test rig and secondary seal device

Presenter: Kyle Brooks

References

- 1. "Symptoms of a Bad or Failing Crankshaft Seal." Your Mechanic. N.p., n.d. Web. 28 Sept. 2016.
- 2. Pawlik, Bernie. "2004 Lexus RX330: Front Crankshaft Seal And Timing Belt Replacement." 2004 Lexus RX330: Crankshaft Seal, Timing Belt Replacement. N.p., 27 Sept. 2013. Web. 19 Oct. 2016
- 3. Shaw, Terry. *Project 1*. N.p.: Cummins Inc., n.d. PPT.
- 4. Shaw, Terry. Cummins Technical Drawings, ISX15.
- 5. Jun 1, 2012 Michael E. Gamache President The Carlyle Johnson Machine Co. Bolton, Conn. | Motion Sy. "Engineering a Better Noncontact Seal." *Machine Design*. N.p., n.d. Web. 19 Oct. 2016.

Questions?