Super Seal: Development of a Robust 2nd Stage Oil Sealing Device for Heavy Duty Engines.

Sponsor: Cummins Inc., Liaison Engineer - Terry ShawFaculty Advisor: Dr. William OatesCourse Instructor: Dr. Shih

Team 1 Members:

Christian Milione Kyle Brooks Jonathan Strickland Olaniyi Ogunbanwo Sean Casey

Design Review Presentation March 30, 2017

Cummins' Heavy Duty Truck engine, the ISX 15 @ 15 Liters, 600 HP

Presentation Overview

- Project Review
 - Background Information
 - Project Description

Design

- Components Selection
- Test Rig Design
- Seal Design
- Testing
- Project Schedule
- Conclusion

Project Background

What's The Problem?

- Motor oil is repeatedly leaking past the rear crankshaft seal.
 - Failed seal¹
 - Material fluctuations due to thermal transients

Motivation

- Cost
- Evolution of Customer Perceptions

Figure 1: Depiction of rear crank seal leaking oil.²

Figure 2: Cummins' newest engine, the Hedgehog @ 95 Liters, 4500 HP Cost for crank seal replacement: \$21,000.³

Presenter: Olaniyi Ogunbanwo

Project Background

Goal Statement

 Design a device to capture leaking oil from a rotating test crankshaft and deposit it into a reservoir so that is can be reintroduced to the crankcase.

Special Consideration

- Test Rig
 - Primarily demonstrate functionality/performance of design solution.
 - NOT to demonstrate life capabilities of design solution.

Project Objectives and Status

Key Project Objectives								
1.) Design oil capturing device	\checkmark							
2.) Design Test Rig to show functionality of design	\checkmark							
3.) Determine feasibility of each design with technical proof								
4.) Obtain needed components to build such devices	\checkmark							
5.) Construct oil capture device and Test Rig	On Going							
6.) Perform 24 hour test to asses functionality of devices	Future Work							

Presenter: Olaniyi Ogunbanwo

Component Selection

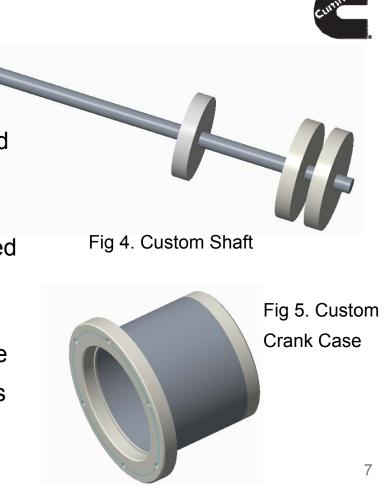
- 1500W Band Heater
 - 900° F at 120 Volts
 - Dimmer Switch to alter voltage supply to bring crankcase to 125° C

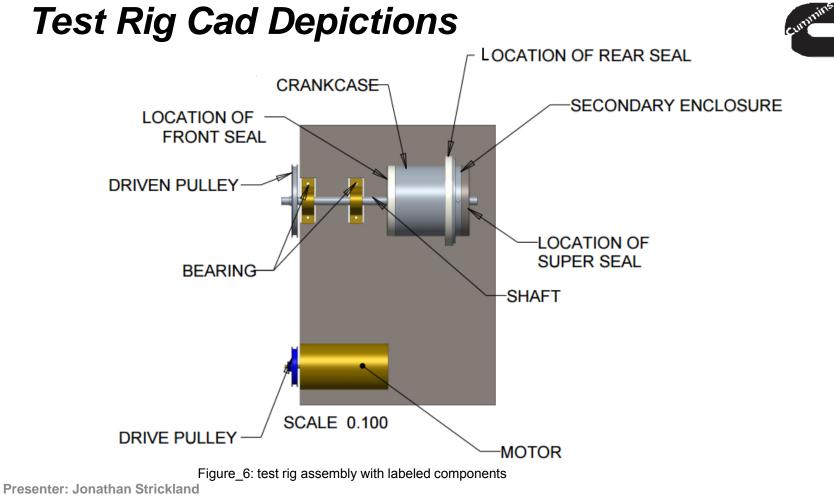
1/3 HP Belt Drive Dayton Motor

- 1475 RPM at 120 volt
- V-belt pulley system utilized to achieve desired shaft speeds for test

Mounted Bearings

 Pillow Block Bearings with 1" bore to support custom shaft


Presenter: Jonathan Strickland



Component Selection

- Custom shaft
 - Driven by belt over pulleys
 - Custom flanges: 2 with 165 mm and 1 with 140 mm OD
 - Seals press fit over flanges
 - Flanges press fit on shaft and welded in place
- Crankcase
 - Made from 8" schedule 40 steel pipe
 - Caps welded on either side for seals to be press fit inside

Presenter: Jonathan Strickland

Test Rig Assembly

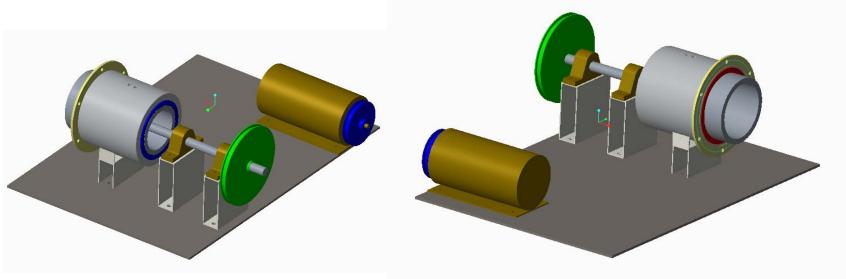


Figure 7: Cad Assembly of Test Rig Orientation 1

Figure 8: Cad Assembly of Test Rig Orientation 2

Presenter: Jonathan Strickland

Exploded Diagram of Test Rig

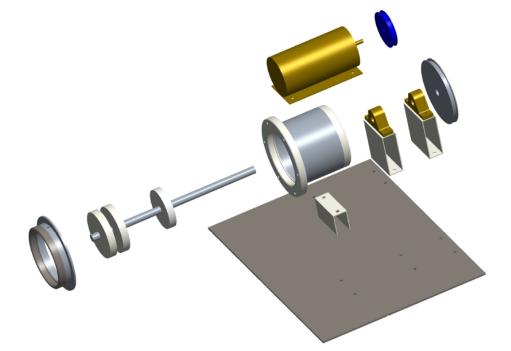


Figure 9. Exploded view showing Individual components of assembly

Presenter: Jonathan Strickland

10

Seal Design Selection

How to Maintain Pressurized Area Behind Main Seal?

Implementation of a Labyrinth Seal

Why?

- Non-Contact Element:
 - Grooves designed for a tortuous path for fluid
 - Provides a seal when the shaft is rotating
- Contact Element:
 - Provides a seal when the shaft is not rotating
 - Contact elements lifts due to centrifugal force during operation

Fig 10. Various seal types

Seal Design

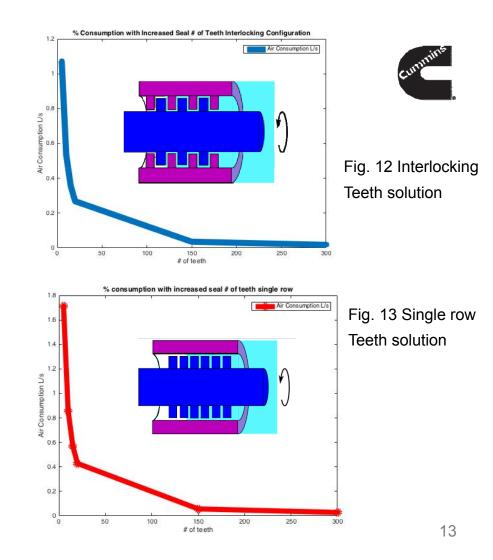
Constraints

- Target air consumption 2.25 L/s \approx 1% of engine air intake
- Static TIR = 0.5 mm
- Dynamic TIR 0.35 mm

Alterable Parameters

- Number of teeth
- Width of teeth
- Tooth Geometry

Figure 11: Hybrid labyrinth visualization.⁵


Seal Design

Interlocking Teeth

- Optimal solution is 10 teeth
- Ideal for Cummins
- Difficult to machine and assemble

Single Row of Teeth

- Optimal solution is 15 teeth
- Ideal for Team 1
- Easier to machine and assemble

Moving Forward

Assembly

- Testing individual components & entire assembly
- Mount remaining components
- Assembling individual components as they are machined

Testing

- Appropriate environment for testing
- Safety Shielding
- Analyze Results
 - Report results to sponsor

Figure 14: Plexiglass Cover

Project Schedule (Gantt Chart)

			2017													
Name	Begin date	End date	Week 2	Week3	Wesk 4	Week 5	Week 6	Week 7	Week 8	Week 9 2/26/17	Week 10 3/5/17	Week 11 3/12/17	Week 12 3/19/17	Week 13 3/26/17	Week 14	Week 15
Finalize BOM	1/9/17	1/27/17				1	27.57.17	Er ter ti	2717/17	2720717	57.57 17	5/12/17	5711717	5720717	512111	31.11.11
Order Parts	1/16/17	1/31/17														
Fabricate Seal Solution	2/1/17	2/15/17														
Assemble Test Rig	2/15/17	2/21/17														
Fabricate Oil Catch	2/21/17	2/27/17														
Test Sealing System	2/27/17	3/7/17														
Analyze Results	3/7/17	3/15/17														
Make Adjustments	3/15/17	4/15/17	_													

Conclusion Project Goal

- Design a device to capture leaking oil from a rotating test crankshaft and deposit it into a reservoir so that is can be reintroduced to the crankcase.
 - Paying close attention to the test rig

Ideal Design

- Design for test rig and capture device is finalized
 - Minor changes may still be implemented
 - Paying close attention to tolerances

What's Next?

- Assembly of test rig and device
- Testing

References

- 1. "Symptoms of a Bad or Failing Crankshaft Seal." Your Mechanic. N.p., n.d. Web. 28 Sept. 2016.
- 2. Pawlik, Bernie. "2004 Lexus RX330: Front Crankshaft Seal And Timing Belt Replacement." 2004 Lexus RX330: Crankshaft Seal, Timing Belt Replacement. N.p., 27 Sept. 2013. Web. 19 Oct. 2016
- 3. Shaw, Terry. *Project 1*. N.p.: Cummins Inc., n.d. PPT.
- 4. Shaw, Terry. Cummins Technical Drawings, ISX15.
- 5. Jun 1, 2012 Michael E. Gamache President The Carlyle Johnson Machine Co. Bolton, Conn. | Motion Sy. "Engineering a Better Noncontact Seal." *Machine Design*. N.p., n.d. Web. 19 Oct. 2016.
- 6.. "FRed Engine Seal." Kaco.de. Kaco, n.d. Web. 16 Nov. 2016
- 7.. "Centrifugal Seals vs. Labyrinth." Centrifugal Seals vs. Mechanical Shaft Seals | Centrifugal Seal | Centritec Seals. Centritec Seals, n.d. Web. 16 Nov. 2016.
- 8. Angela A. Pitenis (1), Kathryn L. Harris (2), Christopher P. Junk (3), Gregory S. Blackman (3), W. Gregory Sawyer (1)(2), and Brandon A. Krick (4). "Ultralow Wear PTFE and Alumina Composites: It Is All About Tribochemis." *Springer*. Springer US, n.d. Web. 16 Nov. 2016.
- 9. "Compressor Power and Efficiency Equations." *Enggcyclopedia*. Enggcyclopedia, n.d. Web. 16 Nov. 2016.
- 10. OmniLip PTFE Rotary Shaft Seals Product Catalog, Saint-Gobain Performance Plastics (n.d.): n. pag. Seals.saint-gobain. OmniLip.
 Web. 17 Nov. 2016

Questions?