Super Seal: Development of a Robust 2nd Stage Oil Sealing Device for Heavy Duty Engines.

Sponsor: Cummins Inc., Liaison Engineer - Terry ShawFaculty Advisor: Dr. William OatesCourse Instructor: Dr. Chiang Shih

Team 1 Members:

cummins

Kyle Brooks Sean Casey Christian Milione Olaniyi Ogunbanwo Jonathan Strickland

Final Presentation

April 13th, 2017

Cummins' Heavy Duty Truck engine, the ISX 15 @ 15 Liters, 600 HP

Presentation Overview

- Project Review
 - Background Information
 - Project Description

Concept Design

- Test Rig Design
- Seal Design
- Testing
- Project Schedule
- Conclusion

Project Background

What's The Problem?

- Motor oil is repeatedly leaking past the rear crankshaft seal.
 - Failed seal
 - Material fluctuations due to thermal transients

Motivation

- Cost
- Evolution of Customer Perceptions

Figure 1: Depiction of rear crank seal leaking oil.²

Figure 2: Cummins' newest engine, the Hedgehog @ 95 Liters, 4500 HP Cost for crank seal replacement: \$21,000.³

Presenter: Olaniyi Ogunbanwo

Project Background

Goal Statement

- Design a device to capture leaking oil from a rotating test crankshaft and deposit it into a reservoir so that is can be reintroduced to the crankcase.
 - Primarily demonstrate functionality/performance of additional seal design.
 - NOT to demonstrate life capabilities of design solution.

Objectives

- Design a capturing device to collect oil.
- Design a rig that can be used to test the recapture device.
- Determine feasibility of each design with technical proof.
- Construct the oil recapture device and test rig.
- Perform the 24-hour trial, and assess overall project success.

Test Rig Concept Generation

Macroscopic Ideation

Sorting Test Cycle

Initial Test Cycle							
Duration (hrs)	Speed (RPM)						
2	500						
6	2000						
2	500						
14	0						

Requirements

- Shell must be oil tight.
- Shell will be filled with oil to 55 mm above the bottom of the 165 mm crankshaft seal.
- Oil must be heated to 125°C.

If the sorting cycle yields positive results, additional steps and durations can be added to increase complexity.

Presenter: Christian Milione

Macroscopic Design

Major 'OTC' Components

- 1500W Band Heater
 - 900° F at 120 Volts.
 - Dimmer Switch to alter voltage input to heat crankcase to 125° C

1/3 HP Belt Drive Dayton Motor

- 1475 RPM at 120 Volts.
- V-belt pulley system utilized to achieve desired shaft speeds for test.

Mounted Bearings

- Pillow Block Bearings with 1" bore to support custom shaft.
- Air Compressor
 - Craftsman 4 gallon air compressor.

Figure 7: Pictures of components purchased for the test rig.

Presenter: Christian Milione

Major Custom Components

- Custom Test Shaft
 - Custom flanges: (1) with 165 mm and (1) with 140 mm OD and the labyrinth seal
 - 4140 Steel Mimic OEM crankshaft
 - Seals press fit over flanges.
 - Flanges press fit on shaft and welded in place

Crankcase

- Made from 8" (203 mm) schedule 40 steel pipe.
- Caps welded on either side for seals to be press fit inside.

Figure 9: Picture of the custom crankcase employed in the test rig.

Presenter: Kyle Brooks

Seal Concept Generation

Inherent Challenges

Sealing

- Each sealing method explored theoretically fails some customer requirement.
- No "1" solution.
 - Solution = Idea(A) + Idea(B) + ...

Innovation

- Use of innovative design techniques/materials.
- "Exciters" in addition to "expected"

Space

- Tight tolerances on spatial availability for device.
 - Keep in mind the customer's customer.

Seal Concept Generation

Macroscopic Ideation – Seal Solution

Additional Secondary Contact Seal		Recollection Through A Vacuum		Pressure Cav	ity Behind	Centrifugal Pressure Seal						
(current one being used/size variant)												
PRO CON		PRO	CON	PRO	CON	PRO	CON					
In production	Fail due to dry sliding	Optimal Re-Capture	No vacuum source	Prevents Leakage	No PSI source	Non-Contact	No Sealing Stopped					
Easy to use	If lubed, fail w/ primary seal		Dry Sliding Seal Req'd	Favorable PSI Gradient	Dry Sliding Seal Req'd	Low Friction	Size Constraints?					
	Envelope too big		Primary seal distortion		Primary Seal distortion	+ Eff vs. Labyrinth	+ Cost					
	Copying failure				What if more oil gets out?							
	Labyrinth	Hybrid Labyrinth		Hybrid Labyrinth + Centrifugal Pressure Seal		New Primary Seal						
PRO	CON	PRO	CON	PRO	CON	PRO	CON					
Non-Contact	No Sealing Stopped	Non-Contact Running	Wear when Contact	HL Pushes Fluid IN	Space	Nano-Composites for Low Wear						
	Size Constraints?	Contact Slow/Stopped	Weep/Seep	Cntr Pushes Contamin. OUT	Oil Recapture	COE Advisor Wants Thi	S					
	+ Cost		Pushes Contaminants IN									

Figure 12: Decision making matrix to facilitate design.

Presenter: Kyle Brooks

Concept Selection

Foundation of Design

Pressurize cavity behind rear main seal

- Aids in a solution to the root cause of the problem = **Best** place to start

Seal Design

Labyrinth Seal

Mechanical Seal

- Designed to make the path of fluid tortuous through the implementation of numerous channels.
- Produces a seal when the shaft is rotating due to centrifugal motion.
- Non-Contact Seal Increased longevity.

Alterable Parameters

- Number of teeth
- Tooth Geometry
- Material of Seal

Constraints

- Target air consumption 2.25 L/s ≈ 1% of engine air intake
- Static TIR = 0.5 mm
- Dynamic TIR 0.35 mm

Figure 14: Labyrinth seal visualization.

Presenter: Sean Casey

Types of Labyrinth Seals

- Straight Through
 - Basic annular shape.
 - Different patterns of teeth.
 - Easier to machine.

- Stepped
 - Conical in shape.
 - More difficult to machine.
 - Not much more efficient for greater cost to produce.

Design of Labyrinth Seal

- Interlocking Teeth
 - Optimal solution is 10 teeth.
 - Ideal for Cummins.
 - Difficult to machine and assemble.

Single Row of Teeth

- Optimal solution is 15 teeth.
- Ideal for this scenario.
- Easier to machine and assemble.

% Consumption with Increased Seal # of Teeth Interlocking Configuration

Presenter: Sean Casey

Our Super Seal

15 tooth system

Created by stacking sheet metal circles _ of alternating diameters.

Presenter: Sean Casey

Figure 19: CAD vs. assembled labyrinth seal.

Project Economics

Bill of Materials

Part Description]	Total Price	Quantity		Cost
motor	\$	147.24	1	\$	147.24
3ft drive shaft	\$	16.62	1	\$	16.62
Rectangular Tube 6"x2" 2 ft long steel for mounting brac	\$	47.38	1	\$	47.38
Pulley 1: 3" diameter 1/2" bore	\$	30.00	1	\$	30.00
Pulley 2: 3.5" diameter 1" bore	\$	30.00	1	\$	30.00
Pulley3: 5" diameter 1/2" bore	\$	30.00	1	\$	30.00
Pulley 4: 9" diameter 1" bore	\$	30.00	1	\$	30.00
Belt1: 4LX50" V-belt	\$	12.00	1	\$	12.00
Belt2: 4LX56" V-belt	\$	12.00	1	\$	12.00
tubing (pressure lines) 1/4" ID 1/2" OD High Temp silico	\$	32.55	1	\$	32.55
Bearings (mounted) steel bearings	\$	39.72	2	\$	79.44
Washers	\$	1.05	6	\$	6.30
bolts M10 (pack)	\$	10.45	1	\$	10.45
nuts M10	\$	0.48	30	\$	14.40
Base Plate	\$	59.00	1	\$	59.00
heating element	\$	102.00	1	\$	102.00
rear crankshaft seal	\$	-	1	\$	
front crankshaft seal	\$	-	1	\$	
pressure regulator/ safety relief valve	\$	14.99	2	\$	29.98
primary enclosure (crankcase)	\$	75.67	1	\$	75.67
Secondary enclosure (super seal)			1	\$	
terciary enclosure	\$	35.00	1	\$	35.00
labyrinth seal	\$	20.00	1	\$	20.00
T's for pressure reg and dial	\$	7.93	2	\$	15.86
Plexi glass shield for system 48" x 96" x 1/8" Clear Acryli	\$	99.00	1	\$	99.00
Oil (1 quart?)	\$	10.00	1	\$	10.00
Containers	\$	2.57	2	\$	5.14
Plug for motor 6" 6 gage wire, max amp: 50 125/250 VAC	\$	9.56	2	\$	19.12
Dimmer Switch for heater 1500 watt	\$	63.22	1	\$	63.22
barbed pipe fittings for tee and pressure gauge	\$	3.85	2	\$	7.70
Caps for crankcase ends	\$	132.52	1	\$	132.52
flanges for shaft seals inside dia fit			1	\$	
flange for crankcase			1	\$	
2 end threaded pipe nipple for pressure Tee	\$	4.59	2	\$	9.18
	_			¢1	101 77

Presenter: Jonathan Strickland

curumins.

Expenditure Breakdown Relative to Budget

Project Economics

Project Schedule (Gantt Chart)

				2016			2017				
Name	2	Begin date	End date	September	October	November	December	January	l February	March	April
0	General Research	9/12/16	9/26/16								
0	Needs Assessment	9/19/16	9/26/16								
0	Conceptual Design	9/20/16	11/1/16		0 0 0 0 0						
0	CAD Renderings	10/24/16	11/21/16								
0	Finalize concepts	11/21/16	12/20/16								
0	Finalize BOM	1/9/17	2/15/17								
0	Order Parts	1/16/17	3/15/17						2000		
0	Air flow/Seal DFM	2/15/17	3/1/17							1	
0	Assemble Test Rig	2/20/17	3/30/17							0000	
0	Performance Trials Test	3/15/17	3/31/17								1
0	Test Sealing Solution	4/3/17	4/10/17								
0	Analyze results/ Adjustm	.4/10/17	4/13/17								

Future Recommendations

If this project has successors:

- Redesign and enhance safety enclosure.
- Investigate alternative materials for the labyrinth seal.
- Plan and conduct a more rigorous trial.
- Develop modular sealing alternatives for comparison.
- Try to decrease the overall complexity of test rig assembly.
- Examine changes that can be made to the OEM seal to address the root cause.

Conclusion Project Goal

- Design a device to capture leaking oil from a rotating test crankshaft and deposit it into a reservoir so that is can be reintroduced to the crankcase.
 - Paying close attention to the test rig.

Ideal Design

- Design for test rig and capture device is finalized.
 - Minor changes may still be implemented.
 - Paying close attention to tolerances.

What's Next?

Testing

References

- 1. "Symptoms of a Bad or Failing Crankshaft Seal." Your Mechanic. N.p., n.d. Web. 28 Sept. 2016.
- 2. Pawlik, Bernie. "2004 Lexus RX330: Front Crankshaft Seal And Timing Belt Replacement." 2004 Lexus RX330: Crankshaft Seal, Timing Belt Replacement. N.p., 27 Sept. 2013. Web. 19 Oct. 2016
- 3. Shaw, Terry. *Project 1*. N.p.: Cummins Inc., n.d. PPT.
- 4. Shaw, Terry. Cummins Technical Drawings, ISX15.
- 5. Jun 1, 2012 Michael E. Gamache President The Carlyle Johnson Machine Co. Bolton, Conn. | Motion Sy. "Engineering a Better Noncontact Seal." *Machine Design*. N.p., n.d. Web. 19 Oct. 2016.
- 6.. "FRed Engine Seal." Kaco.de. Kaco, n.d. Web. 16 Nov. 2016
- 7.. "Centrifugal Seals vs. Labyrinth." Centrifugal Seals vs. Mechanical Shaft Seals | Centrifugal Seal | Centritec Seals. Centritec Seals, n.d. Web. 16 Nov. 2016.
- 8. Angela A. Pitenis (1), Kathryn L. Harris (2), Christopher P. Junk (3), Gregory S. Blackman (3), W. Gregory Sawyer (1)(2), and Brandon A. Krick (4). "Ultralow Wear PTFE and Alumina Composites: It Is All About Tribochemis." *Springer*. Springer US, n.d. Web. 16 Nov. 2016.
- 9. "Compressor Power and Efficiency Equations." *Enggcyclopedia*. Enggcyclopedia, n.d. Web. 16 Nov. 2016.
- 10. OmniLip PTFE Rotary Shaft Seals Product Catalog, Saint-Gobain Performance Plastics (n.d.): n. pag. Seals.saint-gobain. OmniLip.
 Web. 17 Nov. 2016

Presenter: Jonathan Strickland

Questions?