ECE Team 8 / ME Team 29 Strength Assisting Orthotic

Sponsor: Dr. Michael Devine Advisor: Dr. Pat Hollis Professor (ECE): Dr. Jerris Hooker Professor (ME): Dr. Nikhil Gupta

Power-Flex Industries Team Members:

Ryan Whitney - Team Leader, Financial Lead Derek Pridemore - Web Designer, Historian, Co-Lead ECE Robert Slapikas - Assistant Team Leader, Lead ME Jared Andersen - Co-Lead ECE Donglin Cai - Co-Lead ECE 4/14/16

Presentation Overview

- Project Overview
- Load Modeling
- Mechanical System
- Electrical System
- Safety Analysis
- Conclusion

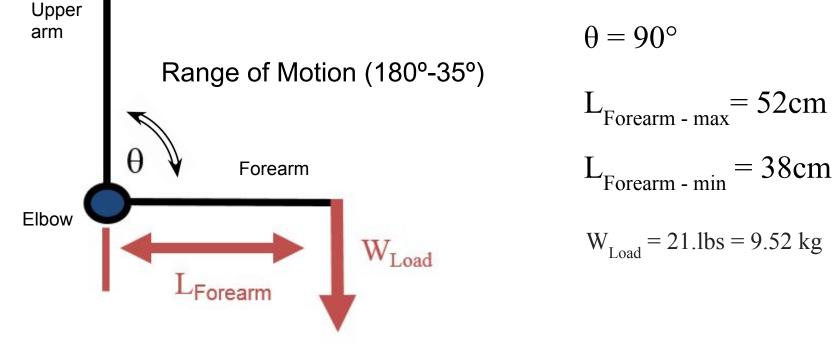
Project Overview

- Purpose: to design and build a powered orthotic arm.
- An orthotic is an artificial device that is used to increase bio-mechanical efficiency.
- This is an entrepreneurial project, so business applications were kept in mind throughout the design process.

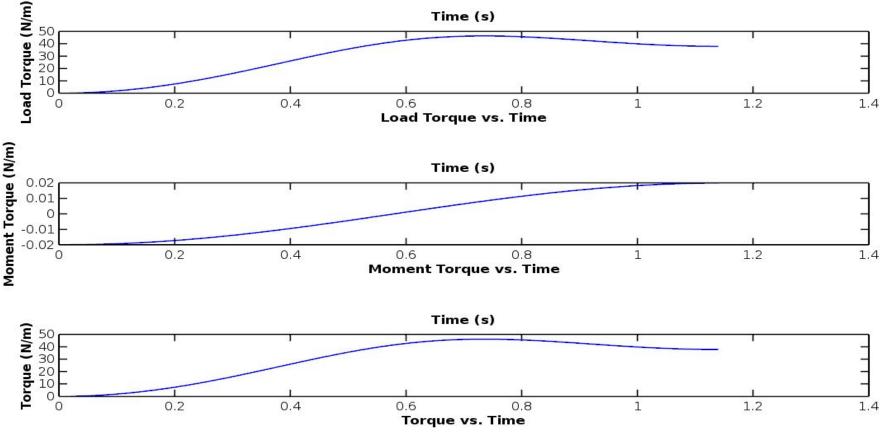
Entrepreneurial Aspect

- Participated in the Engineering Shark Tank Competition, giving a business pitch of our design to a panel of judges.
- Need: Workers that do heavy lifting and are prone to back injury and other such ailments. Many current rehabilitation orthotics are expensive and inaccessible.
- Market:
 - Healthcare
 - Civilian
 - Military

Goals


- 1) Provide a strength-assisting powered orthotic that will make lifting heavy objects easier.
- 2) Increase endurance for holding said objects, using a form of actuation to mimic muscles and a frame to add structure.
- 3) Lift at least 10 pounds with just the power of the orthotic.
- 4) Give range of motion similar to a human arm.
- 5) Allow for a large user base.

Design


- The orthotic is modular (has easily replaceable parts).
- The orthotic frame was conventionally machined out of aluminum.
- The frame includes a sliding bar to change distance of forearm and upper arm, which allows for a large percentage of the human population to be able to use the orthotic.
- The aluminum frame can't plastically deform.
- Range of Motion for the orthotic is 180°-35°
- A motor is used as the method of actuation.
- Increased safety mechanisms and fail safes were used.

Modeling the Load to be Lifted

To find the maximum torque needed, the maximum average forearm length will be used as the moment arm.

Motor Torque Simulation

- Equations used:
 - т = тload+ тmoment
 - $\tau \log d = m^*g^* \sin(\theta)^*r$
 - **Theorem 10**

$$\circ$$
 I = mr²

Types of Electric Motors

- DC Brushless
 - Higher efficiency due to no loss of energy from friction
 - A lower EF and RF noise
 - Output less heat
- Pancake Motor
 - Designed to be flat, use windings around a disc to provide the EM field.
 - The design allows for the motor to be much more compact than other motors
- Brushed DC Motor
 - Moderate level of control
 - Slower, so more torque
 - Rotates continuously

Brushless Motor

Pancake Motor

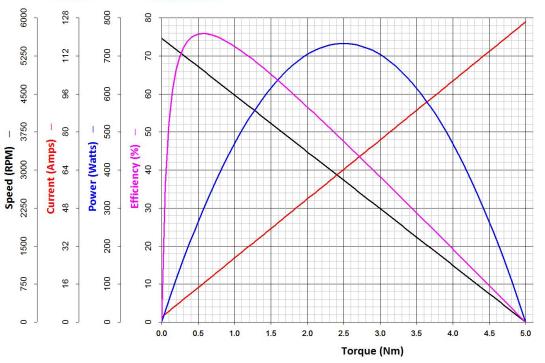
Brushed DC Motor

Motor Choice - AmpFlow E30-150

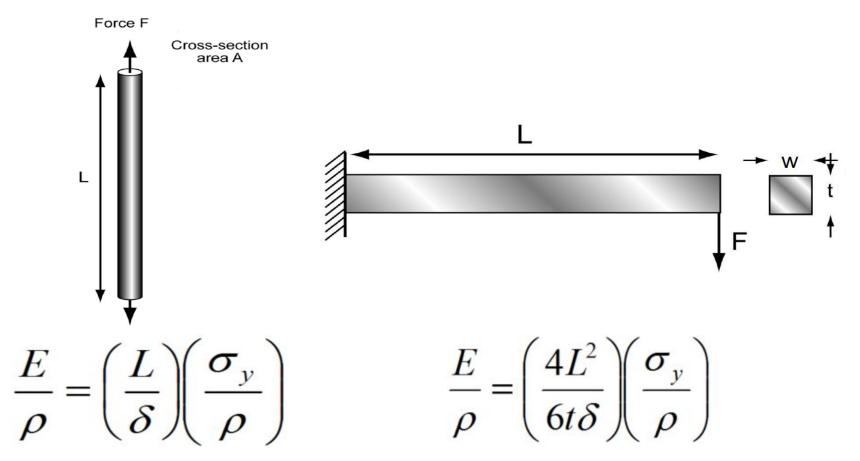
Brushed DC Motor:

- Stall Torque (Nm)
 5.014
- Operating Point

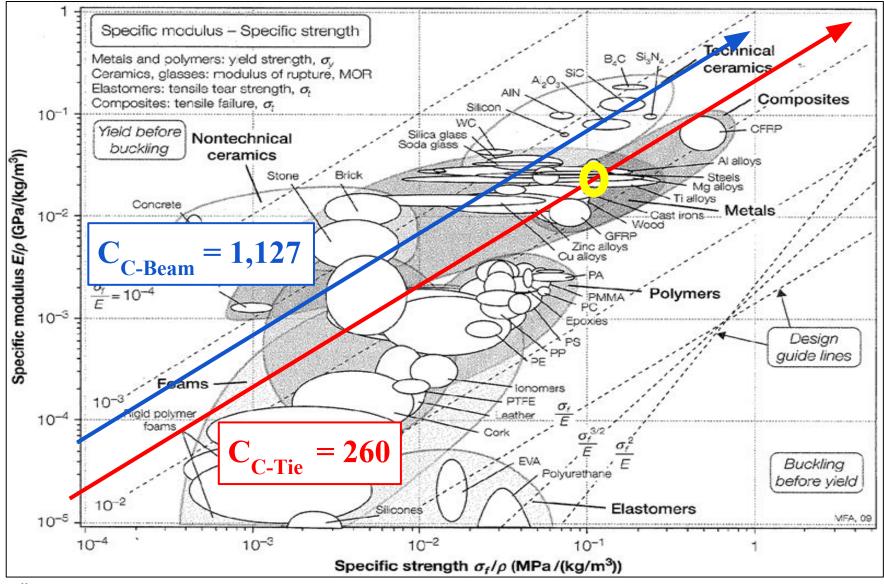
• .95 Nm


• 20 A

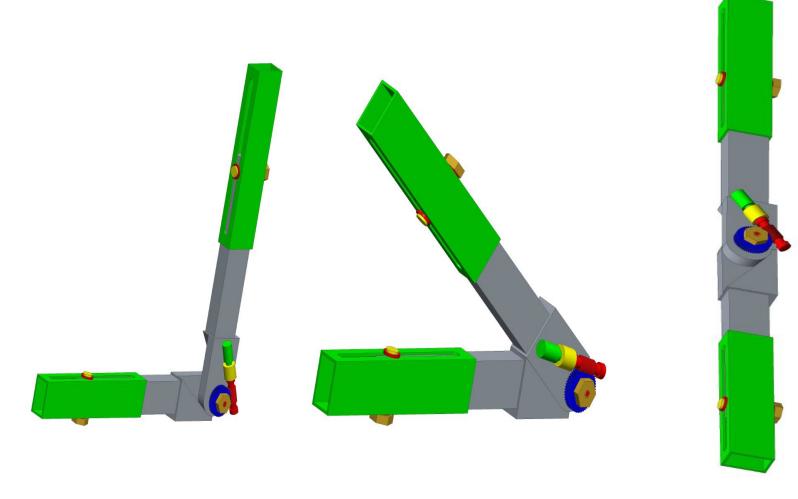
- \circ 24 V peak
- Price



AmpFlow E30-150 24V

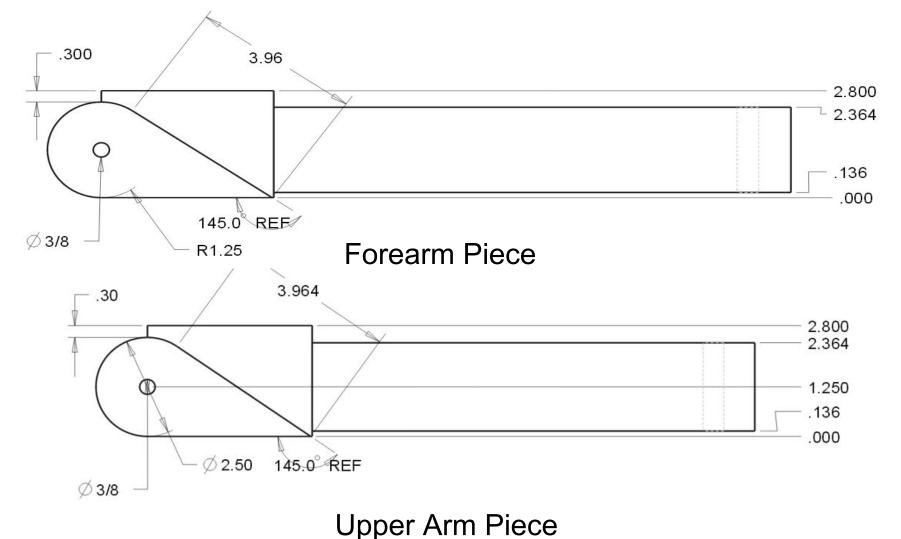


Material Selection

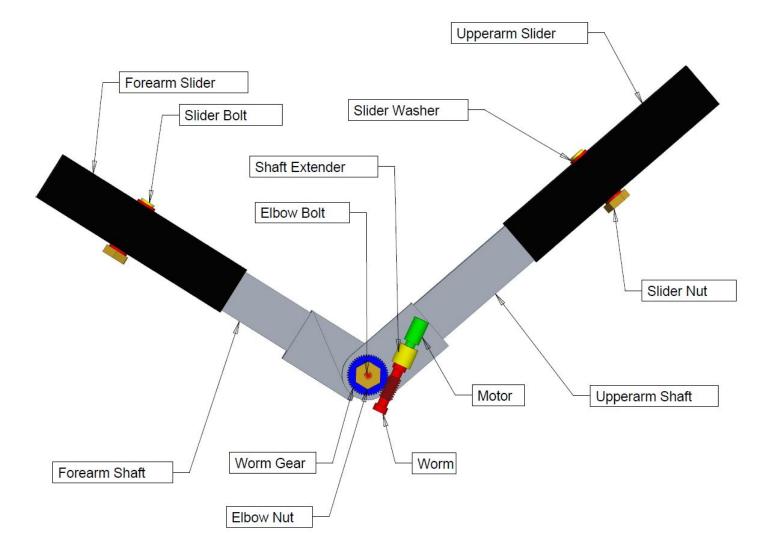

For the general design of our orthotic we simulate the arm as a light, strong, stiff Tie rod when the arm is at 180 degrees and simulate the arm as a light, strong, stiff cantilever beam which is end loaded.

Material Selection (cont.)

Final Frame Design

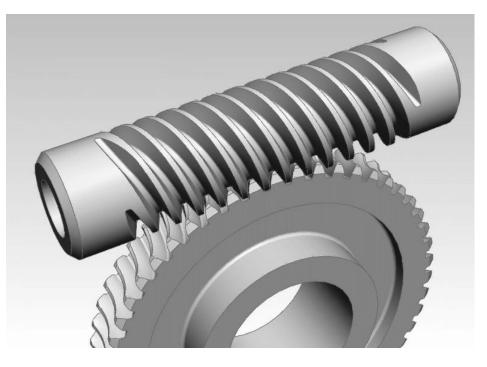


Arm at 90 degrees.


Arm at 35 degrees.

Arm at 180 degrees.

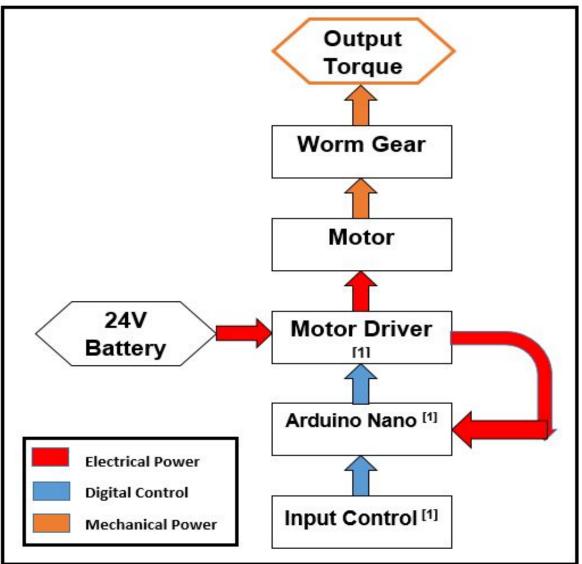
Final Frame Design Cont.


Frame - Fully Labeled

Worm Gear Drive

We chose to apply torque through a worm and worm gear system for several reasons:

- Reduces motor speed
- Increases torque
- Easier to apply torque through the motor
- Locks the user's arm into position when the motor is not activated



Backpack

- Utilize both straps to spread weight evenly across the back
- Will suspend the weight of the orthotic
- Centers moment of inertia
- Adjust straps so that the bag fits closely to the body and does not sit low below the hips
- Houses the microcontroller, motor driver, voltage regulator, and battery.

Upper Level System Diagram

Pridemore

[1] Indicates presence of a safety mechanism

Electronics Selection

- Motor Driver SyRen 50
 - 50 amp continuous current rating
 - 100 amp peak current rating
 - Integrated thermal and adjustable overcurrent protection
- Microcontroller Arduino Nano
 - Breadboard-friendly development board
 - Simple, cheap, effective
- LiPo 24V 5Ah Battery
 - Will be used at 20 Amps.

Pridemore

Budget Analysis

Budget for the project was \$1,400.

Part	Cost of Design	Money Spent					
Arduino Uno Nano	\$8.88	\$0					
DC Voltage Step-down Regulator	\$8.36	\$0					
AmpFlow E30-150 24V	\$79	\$79					
Driver Board	\$119	\$119					
Aluminum	\$470	\$470					
24V Battery	\$83	\$83					
Push Buttons	\$4	\$0					
Worm Gearset	\$92	\$92					
Back Mounted Frame	\$100	\$100 \$221					
Mannequin	\$221						
Total Cost:	\$1,176.55	\$1,164					
Money Leftover		\$236					

Gantt Chart

ID	0	Task Mode	Task Name	Duration	Start	Finish	Feb '10 31	6 7	14	21	Mar '1 28	16 6	13	20	27	Apr '16 3	10	17	24
1		*	Build Frame	39 days	Wed 2/24/16	6Sun 4/17/16				1									
2		*	Test electrical subsystems	13 days	Mon 2/8/16	Wed 2/24/16													
3		*	Final Tests	7 days	Tue 4/12/16	Wed 4/20/16													
4		*	Test mechanical susbsystems	36 days	Tue 2/23/16	Tue 4/12/16													
5		*	Order mechanical parts	34 days	Tue 2/16/16	Fri 4/1/16										1			
6		*	Order electrical parts	27 days	Mon 2/8/16	Tue 3/15/16													
7		*	Program microcontroller	39 days	Wed 2/24/16	Sun 4/17/16													

Safety Analysis

- Potential Problems
 - Motor Overloading
 - Battery Overloading
 - Motor Driver Overloading
 - Movement of arm outside of natural human motion
- Solutions
 - All tests performed in fire-resistant environment, with fire extinguishers present
 - Meticulous testing of set up under multiple test conditions to simulate different use cases
 - Multiple failsafes on each subsystem to ensure immediate shutdown upon dangerous operating conditions
 - Use a mannequin in lieu of a human testing.
- General Safety Protocols
 - At least two testers present during tests: one to perform, one to man the power switch.

Future of the Project

Year 2 of this project will focus on these objectives:

- Fabricate a motor shaft stabilizer
- Continue work on obtaining safety clearance for human testing from the FSU Safety Department
- Implement a biofeedback sensor input system to replace the current push button system

Conclusion

- A brushed DC motor served as the actuator.
- Aluminum was chosen for the composition of the frame.
- A worm gear drive was used and mounted to the elbow joint.
- The frame went through an iterative design process, leading to the final machined design.
- The electrical system was constructed as designed and tested successfully.
- Construction of the orthotic is almost complete.
 Mounting the motor to the frame led to difficulty due to its size.

Questions?

References:

[1] N. Vladimirov, 'Titan Arm', *Titanarm.com*, 2014. [Online]. Available: http://titanarm.com/.

[2] C. Jackson and C. Jackson, 'U.S. Military 'Iron Man' Suit Prototype TALOS Debuts in Weeks [Video]', *Guardian Liberty Voice*, 2014. [Online]. Available: http://guardianlv.com/2014/05/u-s-military-iron-man-suit-prototype-talos-debuts-in-weeks-video/.

[3] Plagenhoef, S. "Body Segment Data." *Body Segment Data*. Research Quarterly for Exercise and Sport, n.d. Web. 20 Oct. 2015.

[4] Ahmed, Altayeb Abdalla. "Estimation of Stature from the Upper Limb Measurements of Sudanese Adults." *Forensic Science International* 228.1-3 (2013): n. pag. Web.

[5] Materials selection in mechanical design. By M. F. Ashby, Pergamon Press, Oxford 1992