LAND BASED AUTONOMOUS VEHICLE (LBAV)

TEAM 22: ALLEGRA NICHOLS DALTON HENDRIX JULIAN WILSON ISAAC OGUNRINDE KHOURY STYLES SPONSOR: AERO-PROPULSION MECHATRONICS AND ENERGY CENTER INSTRUCTOR: DR. NIKHIL GUPTA AND DR. JERRIS HOOKER ADVISOR: DR. NIKHIL GUPTA

DATE: OCTOBER 22, 2015

OVERVIEW

- INTELLIGENT GROUND VEHICLE COMPETITION (IGVC)
- MUST DETECT AND AVOID VARIOUS OBSTACLES
- MUST REMAIN IN A PATH THAT IS NOT PREDETERMINED
- FRAME CONSTRAINTS AND SENSOR INTEGRATION

Presenter: Julian Wilson

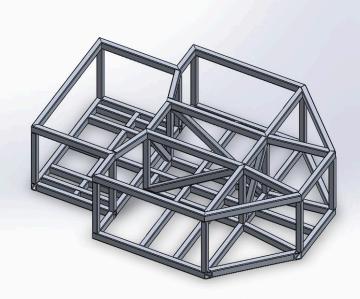
OBJECTIVES

- THE GOAL OF THIS COMPETITION IS TO DESIGN A LAND-BASED AUTONOMOUS VEHICLE THAT CAN DETECT AND NAVIGATE AROUND OBSTACLES IN ITS PATH.
- DUE TO THE TIME CONSTRAINT OF THIS PROJECT, THERE IS A PRIMARY GOAL AS WELL AS SHORT TERM GOAL.
 - PRIMARY GOAL IS TO HAVE A COMPETITION READY VEHICLE
 - THE TEAM GOAL IS TO BE ABLE TO QUALIFY FOR THE COMPETITION BY COMPLETING THE 44 FOOT STRAIGHT-AWAY

Presenter: Julian Wilson

BACKGROUND

- IGVC WAS ESTABLISHED IN 1993
- INCLUDES TOP UNIVERSITIES AROUND THE NATION
- ALWAYS A NEED FOR IMPROVED AUTONOMOUS
 VEHICLES
- PERFECTION OF AUTONOMOUS VEHICLES WOULD REDUCE THE NEED FOR CAREER DRIVERS

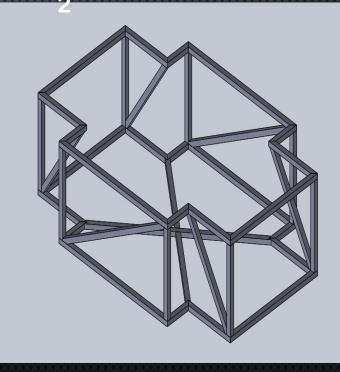

HOUSE OF QUALITY

	Engineering Characteristics			
Design Requirement	Material	Cost (USD)	Weight (lbf)	
Frame	3	9	6	
Speed	3	6	9	
Sensor	3	9	3	
Power	9	6	3	
Locomotion	9	3	3	
Absolute Importance	27	33	24	
Relative Importance	32	39	29	
E.C. Rankings	2	1	3	

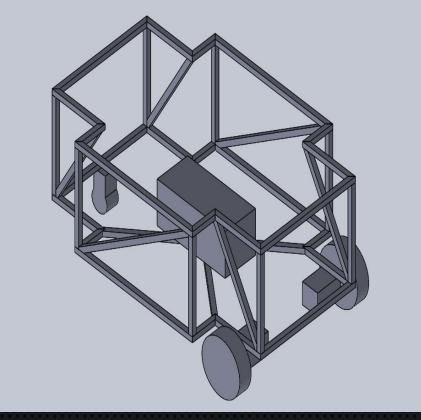
Presenter: Julian Wilson

LBAV FRAME DESIGN

LBAV Frame rev



42" long by 30" wide by 18" tall

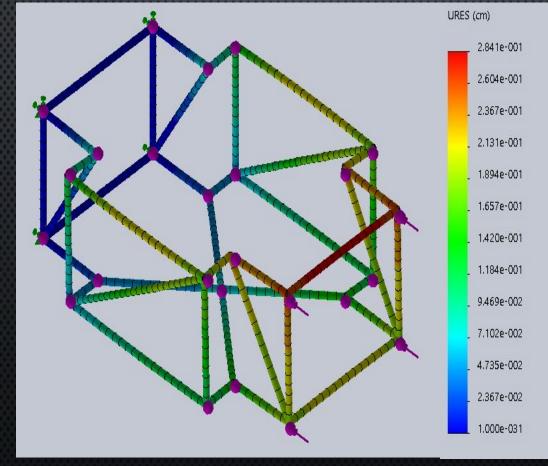

6

48" long by 30" wide by 12" tall Presenter: Dalton Hendrix

LBAV Frame rev

LBAV FRAME MOCKUP

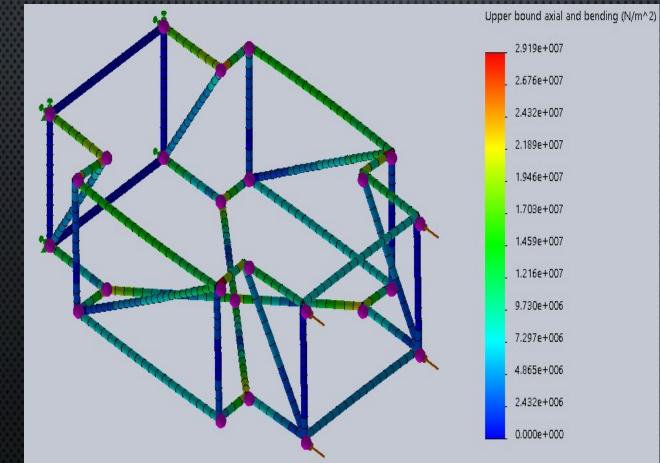
Example locations for caster wheel, motors, wheels, and payload


7

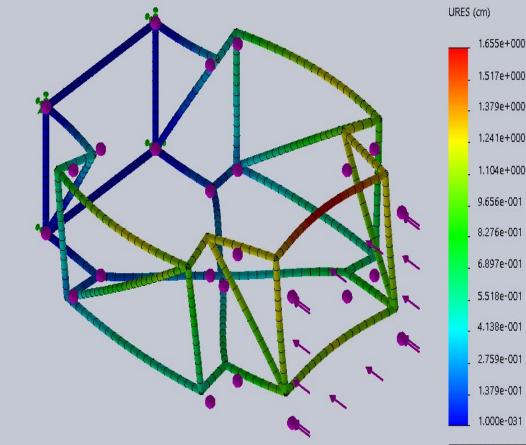
Presenter: Dalton Hendrix

HARDWARE

Steering (0-10)	Programmability	Ease of Control	Weight	Cost	Total
Differential Steering	9	9	8	8	34
Skid Steer	7	7	6	6	26
Tank Tread	7	8	4	5	24
Steering Fans	2	2	9	6	19
Steering Motor	8	6	7	7	28
17					
Body Structure (0-10)	Manufacturability	Weight	Availability	Cost	Total
Tubing Frame	8	7	8	7	30
Sheet Material	6	5	6	4	21
3D Printed	2	9	1	2	14
Floating (Hovercraft)	2	10	2	3	17
Materials (0-10)	Machinability	Weight	Availability	Cost	Total
4130 Steel	7	4	4	4	19
Aluminum 6061	8	7	9	8	32
ABS	9	8	7	7	31
Wood	7	6	9	9	31


FINITE ELEMENT ANALYSIS - THEORETICAL FRONT LOADING DEFORMATION

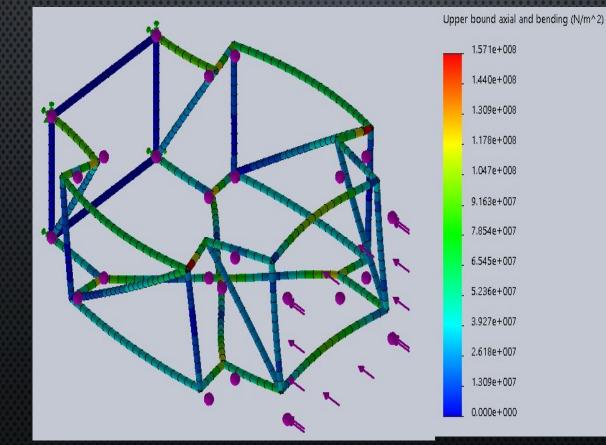
9


Presenter: Dalton Hendrix

FINITE ELEMENT ANALYSIS - THEORETICAL FRONT LOADING STRESSES

Presenter: Dalton Hendrix

FINITE ELEMENT ANALYSIS - OVERLOADED FRONT LOADING DEFORMATION


1.517e+000 1.379e+000 1.241e+000 1.104e+000 9.656e-001 8.276e-001 6.897e-001 5.518e-001 4.138e-001 2.759e-001 1.379e-001

1

1

Presenter: Dalton Hendrix

FINITE ELEMENT ANALYSIS - OVERLOADED FRONT LOADING STRESSES

1 2

Presenter: Dalton Hendrix

TECHNOLOGY

Processor	Power	Weight	Cost	Total
NI MyRio 1900	8	5	6	21
Raspberry PI 2	7	7	7	21
Arduino	7	7	6	20
MSP430	5	6	7	18
	22		97 1.000 - 000 - 00	7
Sensor	Accuracy	Weight	Cost	Total
LR Infrared	8	9	9	26
Ultrasonic	8	9	8	25
Radar	5	7	6	18
Lidar	9	8	0	17
. <u></u>	22. X			
Vision	Resolution	Weight	Cost	Total
Pixi Cam	8	8	8	24
Camcorder	5	4	9	18
	2		97	27
Power	Life Expectancy	Weight	Cost	Total
Lead Acid	6	6	9	21
Lithium Ion	9	9	6	24
Nickel-Metal Hybrids	5	5	8	18
Lithium Polymer	5	6	6	17
hois				

1 3

Presenter: Allegra Nichols

RISK ASSESSMENT-FMEA

Mode	Cause	Severity	Risk
Frame	Overload of	High, Frame is	Frame
Collapsing	stress	damaged	damage could
			effect other
			components
Short Circuit	Overload of	High, Damage	Malfunction
	Current	microcontroller	in the entire
			vehicle
Battery	Overcharging	High, Motion	Ceases motor,
Overheat		controller	No motion.

Presenter: Allegra Nichols

CHALLENGES

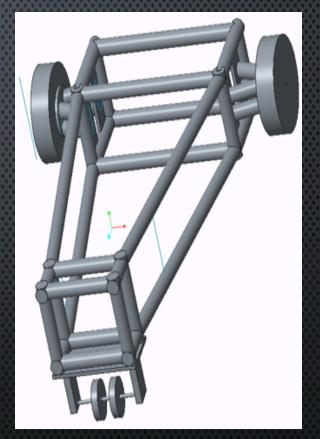
- DUAL UNIVERSITY AND INTERDISCIPLINARY TEAMS
 - MESHING COMPUTER/ELECTRICAL AND MECHANICAL ENGINEERS
 - COMING TO SOUND DECISIONS
 - DISTANCE TEAMWORK
- GAINING KNOWLEDGE
 - LEARNING IMAGE PROCESSING
- AVAILABILITY OF PRODUCTS
- TIME CONSTRAINTS

FLORIDA INSTITUTE OF TECHNOLOGY

- DESIGN 1: HOVERCRAFT
 - LIFT IS GENERATED BY A SINGLE FAN
 - TWO FANS ARE USED FOR DIFFERENTIAL STEERING AS WELL AS PROPULSION
- HEIGHT: 5.2 IN

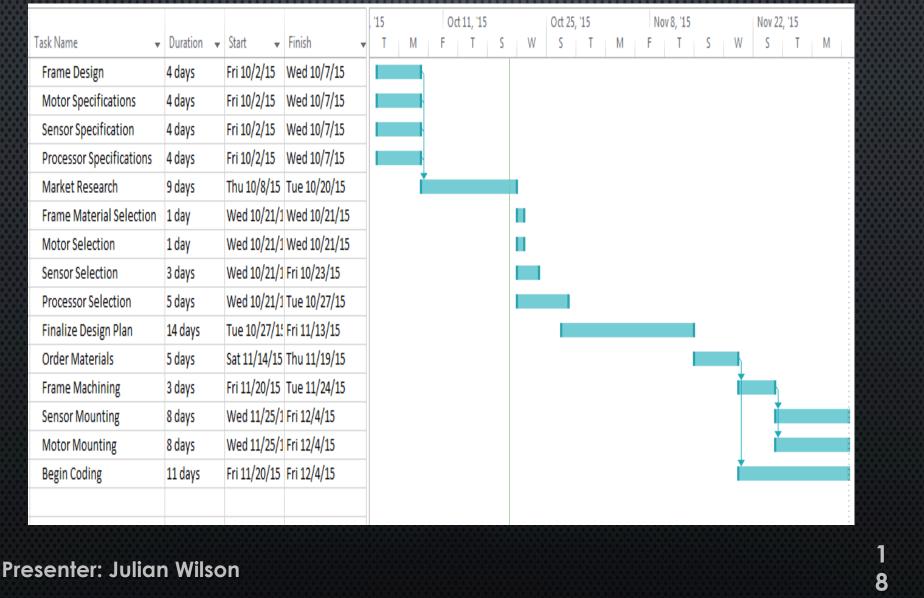
•

- LENGTH: 20 IN
- WIDTH: 14.5 IN


Presenter: Julian Wilson

FLORIDA INSTITUTE OF TECHNOLOGY

DESIGN 2: WHEELED VEHICLE


PARTS INVOLVED IN THE DESIGN OF THE WHEELED VEHICLE INCLUDES:

- CHASSIS: PROPOSED SELECTED MATERIAL IS ALUMINUM TUBES OR CARBON FIBER TUBES.
 - LENGTH: 3.2FT 3.5FT; WIDTH: 3FT; EXPECTED WEIGHT: 6.6 LBF
- SPEED CONTROLLER: FULL SPEED REGULATION WITH LINEAR RANGE CONTROL FROM 0 TO 100%.
- MOTORS: NO LOAD SPEED IS 3200 RPM, RATED LOAD IS Presenter: Juli27091857M.
 - WHEELS: FRONT DIFFERENTIAL

1

GANTT CHART

FUTURE PLANS OUTLINE

- MEETING WITH FIT COLLEAGUES.
- FINALIZING FRAME DESIGN.
- FINALIZING OF PARTS SELECTION.
- ORDERING OF PARTS.
- INITIAL CODING.
- FINAL WEB PAGE DESIGN.

Presenter: Julian Wilson

REFERENCES

• HTTP://WWW.IGVC.ORG/2016IGVCRULES.PDF

QUESTIONS?