Autonomous Ground Vehicle Design for Intelligent Ground Vehicle Competition

MEAC Presentation

Team 22: Allegra Nichols Dalton Hendrix Isaac Ogunrinde Julian Wilson Khoury Styles And Florida Institute of Technology (FIT)

Sponsor: Aero-Propulsion Mechatronics and Energy Center Advisor: Dr. Nikhil Gupta

November 12, 2015

Overview

- Introduction
 - Team Dynamics
 - Intelligent Ground Vehicle Competition
- Competition Objectives
- Proposed Designs
 - Electrical Design Concepts
 - Mechanical Design Concepts
- Design Analysis
- Moving Forward
- Conclusion

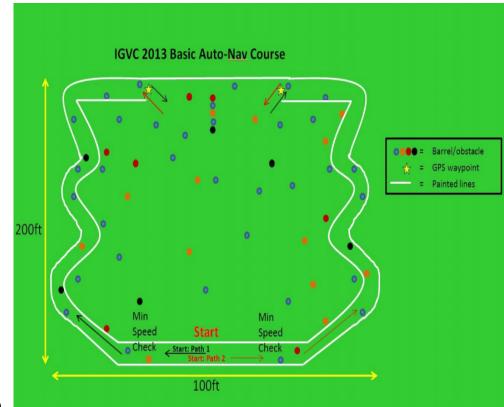
Introduction - Team Dynamics

- Multidisciplinary Distance Teamwork
- **FAMU-FSU College of Engineering**
- FIT Team (Melbourne, FL)
 - 1 Computer Engineer
 - 1 Computer Science
 - 2 Mechanical Engineers
- Working on common goal of qualifying and competing in IGVC AGV attempting to avoid
- Biggest challenge is communication

an obstacle

Introduction-Intelligent Ground Vehicle Competition (IGVC)

- Annual design competition held in Rochester, Michigan established in
- Provides hands on experience
- Focuses on latest technological adv
- Team development
- Inside view of industrial design
 - Team members in remote locations
 - Communication


An autonomous vehicle competing in the IGVC

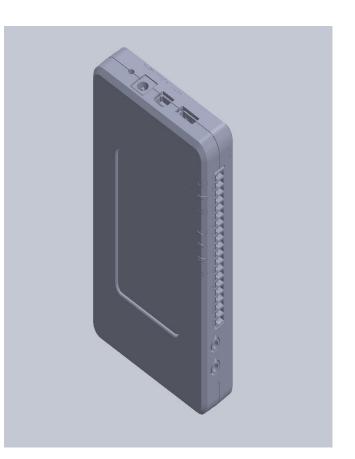
Competition Objectives

- The AGVs are required to
- navigate an outdoor
- obstacle course
 - under 15 minutes
 - Within speed
 - restrictions
 - Remain in lane
 - Waypoint Identification
 - Obstacles

Presenter: Khou Styles 22

Layout of 2013 IGVC basic course

IGVC Design Constraints


- Dimension:
 - Length: 3~7 ft
 - Width: 2~4 ft
 - Height max: 6 ft
- On board Battery Power
- 1 ~ 5 mph Speed.
- On Board and Wireless Emergency Push Stop
- Safety light
- Payload: 20lb (18" x 8" x 8")

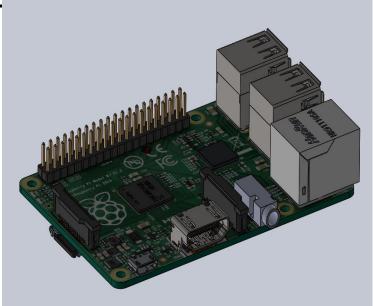
Electrical Design Concepts-Processors

MyRio 1900

- Portable reconfigurable I/O device
- Xillinx Zynq 7 Series FPGA
 - Dual-core Cortex A9 Processor (667 MHz)
- 34- pin headers
- Integrated WIFI (150 m)
- 3 axis accelerometer
- 40 I/O pins
- 193 g (6.8 oz)
- 256 MB memory, 512 MB DDR3
- 14 W power consumption,
 6-16 V operation voltage

Presenter: Allegra Nichols 22

Electrical Design Concepts – Processors


Raspberry PI 2 – Model B

- 40 GPIO pin header
- Broadcom BCM2835 processor (900 MHz)
 - Quad-core ARM Cortex A7 CPU
- 100 mps Ethernet port
- CSI camera connector
- High efficiency power supply
- 1 GB RAM

Presenter: Allegra Nichols

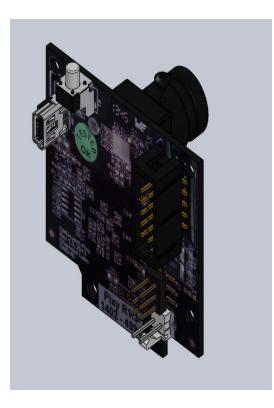
22

- 5 V operation voltage
- 45 g (1.6 oz)

Electrical Design Concepts -Sensory

LIDAR-LITE V2

- 40m range
- 905nm single stripe laser transmitter
- 3 degree FOV with 14mm optics receiver
- 5 V operation voltage
- +/- 0.025m accuracy
- 0.02 sec acquistion time
- PWM interface
- 1-500 Hz rep rate

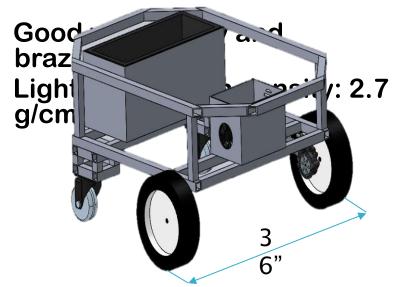

Electrical Design Concepts – Perception

- Pixy Cam
- Teachable camera
- Uses hue and saturation
- 50 frames per sec
 - 640 X 400 20 ms
- Multiplatform compatible
- up to 7 different color signatures
- Detects 100 plus object at a time
- 75 degrees horizontal, 47 degree vertical FOV (Filed of View)
- Standard M12 lens
- 27g weight

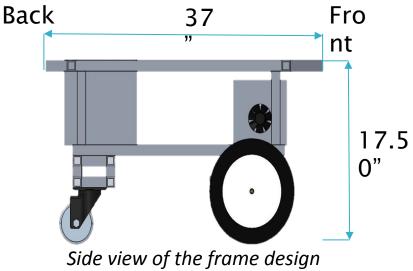
140 mA power consumption

5 V operaus. voltage

- Omnivision OV9715 image sensor
 - 1/4 ", 1280 x 800
- NXP LPC4330 Processor
 - Dual- Core (204 MHz)


Mechanical Design Concept- Frame Design

- Vehicle Frame
- DC gear motor
- Wheel
 - Driving wheel (10" diameter, 5" thickness)
 - Caster wheel (4" diameter, 2" thickness)
- Payload (Weigh 20")
- Electronics Housing


Frame material: Aluminum 6061

- Medium High strength
- Good workability

Isotropic view of the frame design

Mechanical Design Concept-<u>Drive</u> <u>System</u>

Differential Steering:

- Two independently driven wheels
- Take turns at different wheel speed or direction
- Easy to design and implement
- Easy turning
- Light weight
- Inexpensive

Components:

- Wheel, Shaft
- DC gear motor
 - Encoder

Presenter: Isaac Ogunrinde 22

Vehicle direction with respect to wheel Motor driver

otor driver retation										
	MOTIO	LEFT	RIGHT							
	Ν	WHEEL	WHEEL							
	Right	Counter	Counter							
	Turn	Clockwise	Clockwise							
	Left	Clockwise	Clockwise							
	Turn									
	Forwar	Counter	Clockwise							
	d	Clockwise								
	Backwa	Clockwise	Counter							
	rd		Clockwise							
	rd Clockwise									

Example of differential steering

Mechanical Design Concept-Motor Selection

- DC gear motor
- Controlled by motor driver
- Actuates the wheel.
- Enables continual shaft rotation.
- Easy to control
- Inexpensive

Specifications:

- Voltage: 12Volts
- Torque constant: 134ozf.in/A (o. 698ft.lbf/A)
- Angular-velocity constant:10.1 rpm/V
- No-load current: 3A
- Peak Power and efficiency: 0.0887hp and 45%

Presenter: Isaac Ogunrinde 22 Torque needed: 6.023ft.lbf Required current:8.63 Amp.



AME 210-series 12V 88in-lb LH gearmotor-shaft

Mechanical Design Concept-Motor driver

- Motor driver:
 - Controls the motor
 - Interface between microprocessors and motors
 - Supplies relatively higher voltages and current to the motor.
- Specification:
 - Current: 3 ~ 5 Amperes.
 - Voltage: 5 ~ 28 volts.
 - Frequency: 20kHz.
- Advantage:
 - Eliminates audible switching sounds during speed control.
 - Reduced external connections.
 - Features current feedback
- Presenter: Isaac

Ogunrinde 22

Dual MC33926 motor driver carrier.

Mechanical Design Concept- Encoder


Measures wheel rotation and Uses

- Optical sensor(s)
- Moving mechanical component
- Special reflector

To Provide electrical pulses to the motor driver and microcontroller.


- Displacement
- Velocity

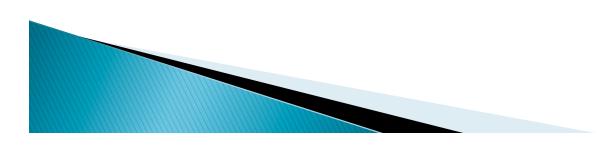
Hollow shaft encoder

Challenges

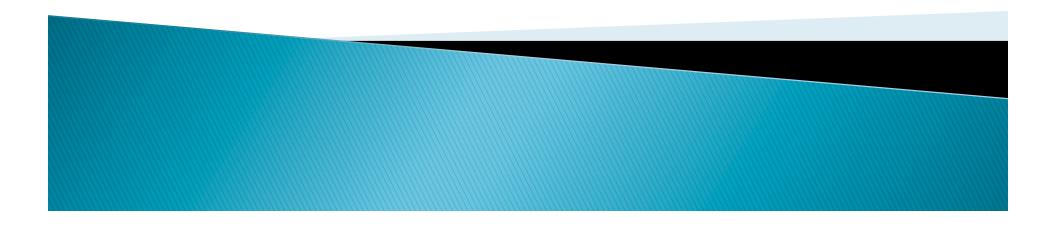
- Starting from scratch
- FAMU/FSU-FIT Collaboration
 - Distance teamwork
 - Meshing Computer/Electrical and Mechanical Engineers
 - Coming to sound decisions
- Familiarizing with unexplored technologies
- Availability of Products
- Time Constraints

Gantt Chart

				September	1	Octob	er 1	Nove	ember 1	D	ecember 1		January 1	
Task Name 👻	Duration	👻 Start 👻	Finish	8/30	9/13	9/27	10/11	10/25	11/8	11/22	12/6	12/20	1/3	1/17
Frame Design	35 days	Tue 9/15/15	Sun 11/1/15	I										
Motor Specifications	35 days	Tue 9/15/15	Sun 11/1/15	I										
Sensor Specification	35 days	Tue 9/15/15	Sun 11/1/15	1										
Processor Specifications	35 days	Tue 9/15/15	Sun 11/1/15	1										
Market Research	35 days	Tue 9/15/15	Mon 11/2/15	1										
Frame Material Selection	1 day	Wed 10/21/15	Wed 10/21/15											
Motor Selection	9 days	Tue 11/3/15	Fri 11/13/15					, t						
Sensor Selection	9 days	Tue 11/3/15	Fri 11/13/15					, t						-
Processor Selection	9 days	Tue 11/3/15	Fri 11/13/15					Ť.						
Finalize Design Plan	6 days	Fri 11/13/15	Fri 11/20/15							հ				-
Order Materials	17 days	Mon 11/23/15	Tue 12/15/15							İ				
Frame Machining	17 days	Wed 12/16/15	Thu 1/7/16								Ľ.			
Sensor Mounting	8 days	Fri 1/8/16	Tue 1/19/16										, t	<u>i</u>
Motor Mounting	8 days	Fri 1/8/16	Tue 1/19/16										Ť.	
Coding Prototype	56 days	Tue 11/3/15	Tue 1/19/16											


Future Plans Outline

- Prototype Perfection
- Finalize Frame Design with FIT
- Purchasing Parts
- Construction of Robot
 - Frame
 - Obstacle detection
 - Obstacle avoidance
 - GPS navigation



Reference

- 1. http://www.igvc.org/objective.html
- 2. http://www.igvc.org/2016IGVCRules.pdf
- http://www.robotmarketplace.com/products/ AME-210-1012.html
- 4. https://www.pololu.com/product/1213
- 5. https://www.sparkfun.com/products/13680

questions?

House	e of Qua	a		ty		K		× — >		++++				\geq	\geq	Positive Negative	
R	Engineering Characteristics Design equirements	Design Requirement Weight	Cost	Sensors	Power	Motor	Image Analysis	Programming	Microcontrollers	Interfacing	Mobility	Differential Drive	Speed Control	Weight	Body Styling		
Vehi	cle Speed	5	1	1	3	5	1	3	5	3	5	5	5	3	1		
Size		1	3	1	1	1	1	1	1	1	3	3	3	5	5	Strong - 5	
Lane	Following	5	5	5	3	1	5	3	5	3	3	1	1	1	3	Medium – 3	
Obst	acle Avoidance	5	1	5	1	5	5	3	5	3	5	3	3	1	1	Weak - 1	
Way	point Navigation	3	3	3	1	1	1	3	5	3	1	1	1	1	1		
Mec	hanical E-Stop	5	1	1	1	1	1	3	3	3	1	1	3	1	5		
Wire	less E-Stop	5	1	5	1	1	1	3	3	3	1	1	3	1	1		
	Absolute Importance	e	57	95	49	69	69	85	121	85	81	61	81	43	63		
	Relative Importance	2	6	11	6	8	8	10	12	10	9	7	9	5	7		
	Rankings		6	2	7	5	5	3	1	3	4	6	4	8	6		21

Decision Matrices

Steering	Base	Control	Feasability	Speed	Total
Differential Steering	0	7	7	7	21
Skid Steering	0	7	5	5	17
Tank Tread	0	5	3	3	11
Steering Fans	0	3	3	5	11
Ackerman Steering	0	5	0	5	10

Body Structure	Base	Manufacturability	Weight	Availability	Total
Tubing Frame	0	7	5	7	19
Sheet Material	0	7	5	5	17
3D Printed	0	5	5	3	13
Hovercraft	0	3	7	5	15

Materials	Base	Machinability	Density	Availability	Total
4130 Steel	0	7	3	5	15
Aluminum 6061	0	7	5	7	19
ABS Plastic	0	5	7	5	17
Wood	0	5	7	5	17

Decision Matrices

Processor	Base	Power Consumption	Processor Speed	Memory	Total
NI MyRio 1900	0	5	5	5	15
Raspberry PI 2	0	5	7	7	19
Arduino	0	5	3	3	11
MSP430	0	5	3	3	11

Sensor	Base	Accuracy	Range	Speed	Total
Infrared	0	5	0	5	10
Ultrasonic	0	3	5	7	15
Radar	0	3	5	5	13
Lidar	0	7	7	7	21

Vision	Base	Resolution	Intigration	Accuracy	Total
Pixi Cam	0	7	7	5	19
USB Camcorder	0	5	3	5	13

Power	Base	Capacity	Voltage	Weight	Total
Lead Acid	0	7	5	5	17
Lithium Ion	0	7	7	7	21
Nickel-Metal Hybrids	0	7	5	5	17
Lithium Polymer	0	7	5	3	15