Marine Keel Cooler Optimization Tool

EML 4551C Senior Design

Sponsored by Frank Ruggiero Faculty Advisor Steven W. Van Sciver, Ph.D. Instructor Nikhil Gupta, Ph.D.

Team 3

Melissa Allende Grady Beasley Stanko Gutalj James Haga Jacob Ross

Presented 20 October 2015

Overview

- Problem Statement and Goal
- Project Scope
- Background and Theory
- Design and Analysis
- Scheduling and Resource Allocation
- Results
- Conclusion

Problem Statement & Goal

• Problem Statement:

"The current Cummins Keel Cooler Tool provides no feedback on a particular design and is limited in its capability"

• Project Goal:

"Design a more versatile design tool which generates feedback and provides a more user friendly interface"

Project Scope

- The current design has no customer feedback
- Only provides user an output of "Pass/Fail" on design
- Needs to provide recommendations for design improvement
- The device needs to be able to evaluate the design of the keel cooler through the use of different materials (Currently only evaluates steel)
- Current tool is outdated and not user friendly

Project Scope

- Customer Characteristics
 - Evaluates through multiple materials
 - Accurate
 - Interactive feedback
 - Define optimal size
- Engineering Characteristics
 - Sharable
 - Programming Language
 - Minimize coding lines
 - Maximize processing time

Technical Rank scale:	
4 Highest	
2 Medium	
1 lowest	

Customer Priority: Ranks from 1 to 5 where 5 is the highest

- A properly designed and installed cooling system is essential for satisfactory engine life and performance
- Keel cooling is a cooling system which utilizes a group of tubes, pipes or channels attached to the outside of the hull below the waterline
- Cummins Marine one of the Markets within Cummins Inc. is specialized in diesel engines outfitted to provide power in marine vessel applications
- Since cooling of engine is not possible to thoroughly rely on charged air circulation, an alternate system must be used

- Cummins Marine Requires a design optimization tool as well as a design validation tool for keel cooling systems
- A predictive tool is require for the Marine Application
 Engineers to ensure engine installation quality assurance

LTA Thermostat Housing

 Jacket Water After Cooler (JWAC) QSK19

- Steps for Design:
 - 1. Choose the right programming language
 - Can we make the program work?
 - 2. Identify the user and current inputs/outputs
 - Who will be utilizing the program?
 - What are the user inputs?
 - What are the expected outputs?
 - 3. Structure the program correctly
 - *Is the program intuitive and self-explanatory?*
 - Establish standards for quality

- 1. Choosing a Coding Language
 - C, Java, Matlab
 - Judging criteria
 - ✓ Knowledge
 - Structure
 - Aesthetics
 - ✓ Relevance

Table 1: Decision Matrix

Program:	Knowledge	Structure	Aesthetics	Relevance	Total:
С	9	10	1	10	8.5
Java	2	7	8	8	4.2
Matlab	8	1	8	6	6.4

C was chosen due to Team Member familiarity and ease to convert to other languages if necessary

cummins

- 2. Identify the User
 - Primary users will be Marine Application Engineers and Boat builders in shipyards
 - Two purposed: Validation and Design
 - Uses same user inputs as the current program but adds custom engine option as well as design mode inputs
 - Outputs: 2 Modes 3 Ouputs
 - **Design Mode:** Allows users to input custom parameters and outputs design specifications
 - Validation Mode: Allows users to input current specifications and outputs either "Pass" or "Fail" with design optimization suggestions

Current Program

Specification Sheet

Engine Data				
Engine Model				from General Data Sheet
Engine Brake Horsepower	[BHP]			from Performance Data Sheet
Engine Speed	[rpm]			from Performance Data Sheet
Select a Cooling Circuit Type				from Performance Data Sheet
Total Circuit Heat Rejection	[BTU/min]			from Performance Data Sheet
Coolant Flow to Keel Cooler	[gpm]			from Performance Data Sheet
Engine Coolant Capacity	[gallons]			from General Data Sheet
Coolant Type (50/50 glycol or Water/DCA	4)	Make a Selection	~	50/50 Glycol solution preferred
Maximum Sea Water Temperature	[deg F]	85		Typical sea water temperature is between 75-85 deg. F
Design Speed	[knots]			Typical sizing speeds are: 1) Tugs/Pushboats: 1-2 knots 2) Generator set: 0.1-1 knots
Keel Cooler Data		3		
Standard Channel Size		Make a Selection	~	C depth (inches) × Weight Per Unit Length (pound force per foot)
Channel Width	[inches]			from standard steel channel tables
Channel Height	[inches]		2	from standard steel channel tables
Web Thickness	[inches]			from standard steel channel tables
Cross Sectional (Web) Area	[sq. inches]			from standard steel channel tables
Coolant Velocity	[ft/sec]			Best if kept between 2-8 ft/sec
Channel Material		Steel		
Total Installed Keel Cooler Length	[feet]			Increase cooler length or number of flow paths until Pass/Fail criteria is met
Thermal conductivity "k"	[BTU/hr-F-ft]	26.5		
Number of Flow Paths				
Results				
Actual KC Exterior Area	[sq. feet]			
Calculated Exterior Area	[sq. feet]			
Minimum Keel Cooler Length	[feet]			
Minimum Expansion Tank Capacity	[gallons]			from Installation Directions bulletin No. 3884744
Passing Criteria	[Pass / Fail]			Increase cooler length or number of flow paths until Pass/Fail criteria is met

cummins.

- 3. Program Structure
 - Divided into the main function with conditionally accessed sub-functions (modules)
 - Sub-functions contain engine information, variable parameters, and calculations
 - Logical structure of user input
 - User selects answers by typing corresponding numbers from the Engine Data Sheet
 - User to have option of returning to previous selection screen

Scheduling and Resource Allocation

- Trip to Cummins Marine Integration Center facilities Scheduled Spring 2016
- Team expected to visit production facility Scheduled Spring 2016
- First-hand look at production engine and keel cooler system
- Gain general assessment of keel cooled system:
 - Functionality
 - ✓ Typical dimensions/specifications on installed system

Scheduling and Resource Allocation

- Work Breakdown
 - <u>Program:</u>
 - Stage 1: Catalog constants/Values in program
 - Stage 2: Incorporate thermodynamic formulae in program
 - Stage 3: Test/Debug
 - Stage 4: Add functionality for multiple material
 - Stage 5: Test/Debug
 - <u>Testing Apparatus</u>:
 - Design Keel Cooler test section (sea channel)
 - Build test section to analyze program performance/predictive nature

Scheduling and Resource Allocation

- Cost Breakdown
 - Program:
 - Coded using free software available to team (no monetary cost, just time)
 - <u>Testing Apparatus</u>:
 - Square metal tubing- Steel: \$13 ft. / Aluminum: \$10 ft.
 - Round metal tubing- Steel: \$ 5 ft. / Aluminum: \$6.50 ft.
 - Pump- \$100-500
 - Flanges- \$2-50 (dependent on material, size, intricacy, etc.)
 - Fasteners- <\$250
 - <u>Travel Expenses:</u> ≥ \$400

Results

Possible Risks in Product Testing

- Building the testing equipment (validation keel cooler)
- Proper Keel Cooler connections
- Burns caused by the heat transfer from the engine
- Possibility of causing engine failure by overheating engine \$\$\$

Results

Possible Risks in Product Implementation

- If the product does not provide the correct read outs
- Improper analysis could lead to an overheated engine (potential engine failure)
- If proper engine cooling is not achieved, could lead to poor reputation/image of project sponsor and team

Risk Analysis

- Concept Generation (No Risk)
- Product Assembly (Low Risk)
- Product Testing (Medium Risk)
- Product Implementation (High Risk)

Team 3: Marine Keel Cooler Optimization Tool

• Current Week:

Project Outlook

- Prepare equations for coding
- Determine outline for program
- Create flow chart for code
- Following Week:
 - Continuation of above tasks
 - Establish basic architecture
 - Configuration design

ID	0	Task Mode	Task Name	Duration	Start	Finish
14		*	pugh matrix	1 day	Fri 10/16/15	Fri 10/16/15
15		*	decision matrix	2 days	Sat 10/17/15	Mon 10/19/1
16		*	project prep	2 days	Mon 10/19/15	Tue 10/20/15
17		*	Midterm Report I	1 day	Tue 10/20/15	Tue 10/20/15
18		*	product architecture	11 days	Tue 10/20/15	Tue 11/3/15
19		*	Flow Chart	11 days	Tue 10/20/15	Tue 11/3/15
20		*	configuration design	11 days	Thu 11/5/15	Thu 11/19/15

