

Team #E11- #M27 Members & Acknowledgements NGES: Pete Stenger Matthew Cammuse Joshua Cushion Patrick De la Llana Malcolm Harmon

Julia Kim Benjamin Mock Mark Poindexter Jasmine Vanderhorst

Design Concept – 20 Antennas: 16 Receive – 4 Transmit – Controls: FPGA - Signal Processing, Timing, A/D Conversion, and Image Generation – Structure: 2 Rows of 10 Antennas – Orthogonally Placed, Target Epicenter in Middle of 2 Rows 40 x 40 inch scene Pulsed Transmit/Receive Imaging Radar 16 - 2.5 inch No moving parts Uses all COTs components 1-D Cells in Uses digital beam forming Azimuth and Elevation 20 foot range to scene center 6 5 x 5 feet 20nS wide RF Beams are formed Pulse @ 10 GHz Digitally with Fourier VGA Transform, 16 in Azimuth Display And 16 in Elevation ntenna Arrav Requirement Units Value Comments 10.0 +/-Single frequency operation. Frequency GHz 0.1 GHz BW supports 1/PW A future enhancement to N/A inches Down range resolution performance TX Pulse Width 20 nS PCB Connects to All (PW) Components **Transmit Power** W 0.2 Antenna aperture Waveguide horns in cross 5 x 5 feet configuration size Pulse Repetition 100 nS Interval Does not include front end **Receiver Noise** dB losses Figure

SAR Imager

- Dr. Rajendra Arora
- Dr. Shonda Bernadin
- Dr. Emmanuel Collins
- Dr. Simon Foo

What is an SAR?

 <u>Synthetic Aperture Radar</u>: Electronically synthesizes high resolution performance of very large antennas from smaller antennas, captures several high resolution images to create single image map.

-*Typical Use:* Environmental Monitoring, Earth-Resource Mapping, and Military Applications

–Project Theory: 20 stationary antennas, creating a single low resolution image for the purpose of detecting metal objects and weapons

-Typical Use: Gov't Buildings, Schools, Airports, & etc.

Electrical System Chain Overview

Transmit: Generate RF Pulse 20 ns
 Receive: Reflected RF signal scatterings from target
 IQ Demodulator: Convert the phase and amplitude of the received RF scatterings to DC voltages

SAR Imager – Team #E11 - #M27

Dr. Michael Frank Dr. Nikhil Gupta Dr. Bruce Harvey Dr. Okenwa Okoli Ricardo Aleman Samuel Botero Emily Hammel Margaret Scheiner

Sample Testing Results

Components	Measured Power		
components	dBm	mW	
VCO	-4	0.398	
Super Ultra Wideband Amplifier	20.9	123.027	
SPDT Switch	19.76	94.624	
Frequency Multiplier	-3.06	0.494	
Ultra Wide Bandwidth	8.94	7.834	
Power Amplifier	22.5	177.828	
SP4T Switch	20.38	109.144	
arker 1 10.050 GHz #IFGain:Low Center Freq: 10 Trig: Free Run #Atten: 6 dB	.0000000000 GHz Avg Hold:>10/10	Radio Std: None 0 Radio Device: BTS	
0 dB/div Ref -1.00 dBm		Mkr1 10.05 GHz -86.920 dBm	
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		Span 500 MHz Sweep 1 ms	
Channel Power Pow	Power Spectral Density		

-29.37 dBm / 500 MHz

-116.4 dBm /нz

 – SP4T Signal Output measured Spectrum Analyzer

– Shows the pulse width (20ns) of the signal in frequency domain centered at 10 GHz.

The null frequency is the pulse width.

SAR Imager

VHDL Coding Subtasks

Discrete Timing Control

- Switch Timing
- Controls between Transmit/Receive Mode

A/D Conversion

- IQ Demodulator \bullet voltage logic stored in 12-bit word
- Range: 0-3.3V

Positive Imaginary Negative Imaginary Voltage Voltage

Multid

Electrical

- Signal Processing
- **FPGA Programming** •
- Antenna Aperture
- Procedure & Testing •

VGA Code

Metal highlighted in 1-D 16 column display

Signal Processing

- 1D image representing
- incoming energy at 3
- different angles
- Display would have 4
- "strikes" indicating
- incoming energy

SAR Imager – Team #E11 - #M27

scipline Project Division			
Mechanical		Industrial	
Antenna Structure	•	Proj. Management	
Component Box	•	Budget Allocation	
Trihedral Design	•	Procurement	
Structural Analysis	•	Risk Analysis	
Build & Assembly	•	Webpage Design	

Mechanical		Industrial
 Increase Rigidity of Structure Perform In Depth Thermal Analysis on Electrical Components Add Wheels to Structure for Ease of Mobility 	•	Perform DFMA Analysis Formalize Procurement Procedure Perform Reliability Study & Improve System