Team 25: Taller Wind Turbine for Low Wind Speed Regions

Sponsor: Dr. Sungmoon Jung Advisor: Dr. Kunihiko Taira

Authors: Steven Blanchette (ME) David Delie (ME) Kimberly Martinson (CE) Jeremiah McCallister (ME) Abigail McCool (ME) Theodore Meros (CE)

Here have all _____

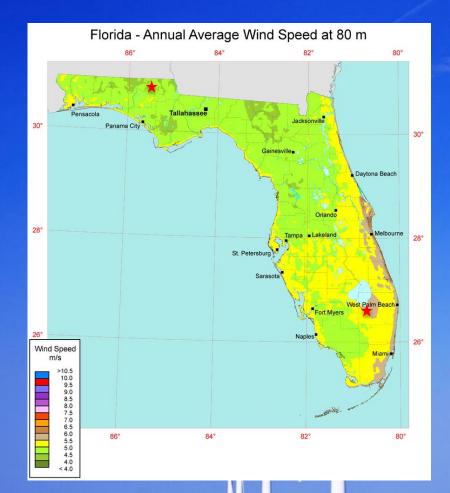
Project Overview

Current 80 meter wind turbines are not cost-effective for use in the Southeastern U.S. due to lower average wind speeds.

Horizontal Axis Wind Turbine

Current Specs:

- 1-2 MW
- Avg. 80m hub height
- Blades ~60m long
- \$72/MWh


Project Specs:

- 5 MW
- Taller structure (157.5m)
- Design lighter blades of same size
- Number of blades: 3
- Budget: \$2,000

Location Selected

• Compared Locations:

- North of Marianna
 - Highest elevation in Florida
 - Lower wind speeds
- Southeast of Lake
 Okeechobee
 - Lower elevation
 - Highest wind speeds at 80m
 - Selected location

Mero

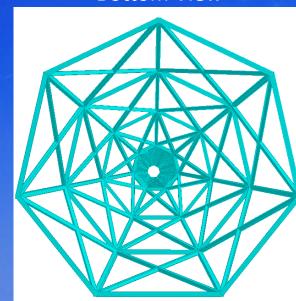
Tower Design

- 157.5m hub height
- Design

 Bracing: HSST 12x12
 Column: HSST 14x14

 Total Thrust: 640N

 Designed: 890N
- Base of tower was widened
 - Adding internal bracing to increase strength & reduce weight

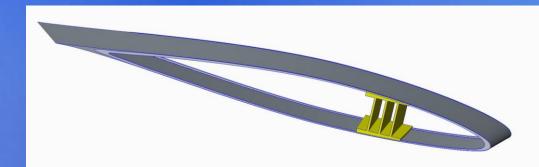

Meros

Tower Design

• 7 sides

- Allows for wider base (restricted by semi trailer size)
- Connection design

 Modular construction
 Male-Female plugs
 - Reduce construction time


Meros

Bottom View

Blade Design

McCallister 6

- Blade Length: 61.5m
- Cross-sectional shape: NACA-64
- Shell Material: E-Glass, 12K Carbon Fiber, Epoxy, Styrene Acrylonitrile (SAN) Foam
- Spar: Triple I-Beam
 - Good distribution of load
 - Lightweight
 - AL-6061

Turbine Assembly

- 225m (740ft) tip height
- 123m (404ft)
 swept
 diameter
- 11,875m²
 (128,000ft²)
 swept area

McCallister 7

Tower Prototype

- 8ft steel tower
 - Scaled model of tower using fewer sections
 - General geometry will be properly scaled
 - Exception of members that become unrealistically small

McCallister 8

- In progress
 - Custom connection design
 - Engineering drawings for machine shop

Blade Prototype

- Manufacturing options
 - Make polyurethane blades using a 3D printed mold
 - Cut Styrofoam by hand
- 3ft Styrofoam blades
 - Solid Styrofoam wrapped in fabric
 - Scaling makes blade internals unrealistic

McCallister

Revenue Calculation

- Obtaining wind data

 Hourly wind data of 2014
- Calculate power generated from wind speeds

Blanchette

- Cost: 12 cents/kWh
- Comparing to ordinary turbine data

 Colorado

Future Work

- Complete fatigue analysis of blades and tower
- Determine revenue for turbine design

Blanchette 1

- Order materials for prototype
- Build prototype

Summary

- Low wind speeds in southeast US inspired desire for taller wind turbine
- Final designs were chosen for tower structure and blade design

Blanchette 1

- Currently getting quotes for purchasing
- Next Steps
 - Turbine Analysis
 - Obtaining materials
 - Building prototype

References

- http://www.nrel.gov/docs/fy09osti/38060.pdf
- http://wind.nrel.gov/public/bjonkman/TestPage/FAST.pdf
- http://www.gettyimages.com/detail/news-photo/aerial-viewof-field-taken-from-goodyear-blimp-above-newsphoto/457716040

Blanchette 13

- http://www.ncdc.noaa.gov
- http://www.nrel.gov/midc/nwtc_m2/

Questions?