Team 25: Taller Wind Turbine for Low Wind Speed Regions

Sponsor: Dr. Sungmoon Jung Advisor: Dr. Kunihiko Taira

Authors: Steven Blanchette (ME) David Delie (ME) Kimberly Martinson (CE) Jeremiah McCallister (ME) Abigail McCool (ME) Theodore Meros (CE)

Here have all _____

Outline

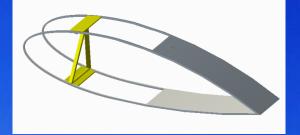
- Project overview
- Full scale design
- Prototype design
- Budget
- Challenges faced
- Future work

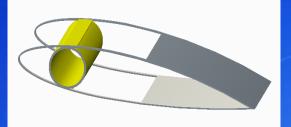
Team 25: Taller Wind Turbine for Low Wind Speed Regions

McCallister 2

Project Overview

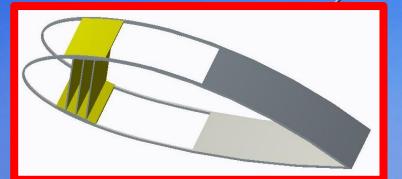
McCallister


Current 80 meter wind turbines are not cost-effective for use in the Southeastern U.S. due to lower average wind speeds.


Project Specs:

- 5 MW
- Horizontal Axis Wind Turbine
- Taller structure (157.5m)
- Design lighter blades of same size
- Number of blades: 3
- Prototype budget: \$2,000

Selecting Final Design


• 4 initial designs for internal spar

- Compared weight, shape factor, ease of manufacture, risk of failure
- Triple I-Beam selected

Team 25: Taller Wind Turbine for Low Wind Speed Regions

McCallister 4

Blade Design

McCallister 5

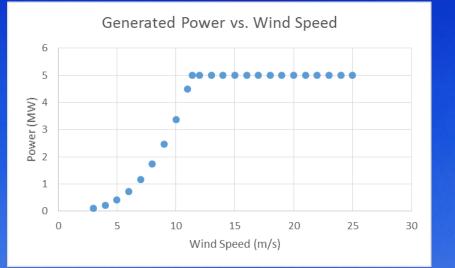
- Blade length: 61.5m
- Cross-sectional shape: NACA-64
- Varying angle of twist
- Shell Material: E-Glass, 12K Carbon Fiber, Epoxy, Styrene Acrylonitrile (SAN) Foam
- Spar: Triple I-Beam
 - Good distribution of load
 - Lightweight
 - AL-6061

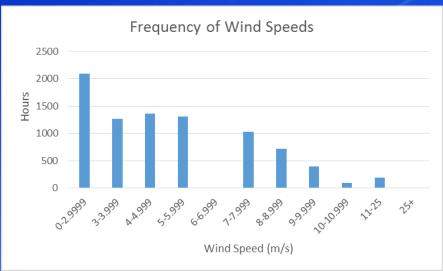
Selecting Final Design

Meros 6

- Initial designs

 Heptagonal lattice
 Triangular lattice
- Comparisons
 - Ease of transportation
 - Strength
 - Constructability
 - Weight
- Decision: Combination of two designs




Tower Design

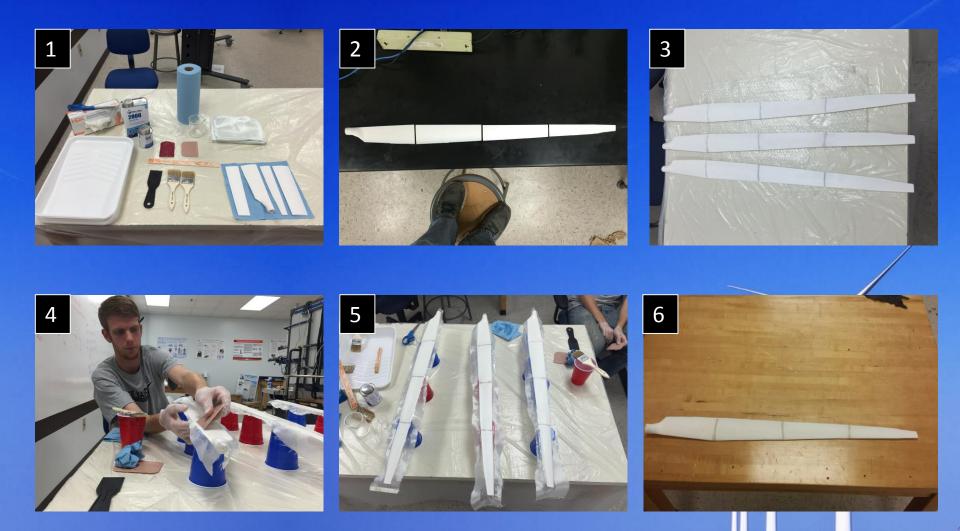
Mero

- Hub height: 157.5m
- 7-sided lattice tower
- Materials:
 - Hollow Structural Steel Tubing (HSST) sections
 - Architectural fabric
- Features:
 - Wider base
 - Internal bracing
 - Modular construction

Wind and Power

Delie 8

Belle Glade, FL (2014): Power Generated ≈ 137,000 MWh

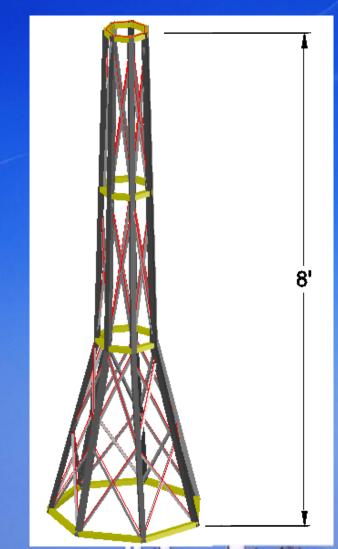

That's enough electricity to power 12,600 homes.

Manufacturing Prototype Blades

- 3-D Printed Blade
 - 4 sections 9 inches long
- Epoxy putty will connect sections
- E-glass and epoxy will be used to reinforce the blades

Delie

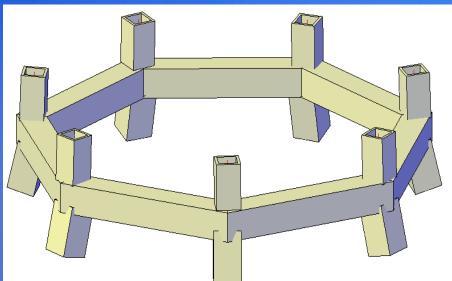
Blade Assembly



Delie 10

Tower Prototype

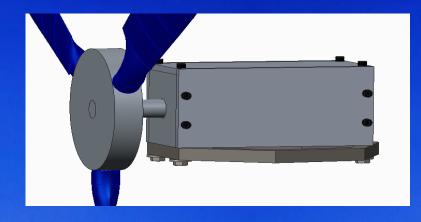
- 8-ft Steel Tower
 - 3 typical sections
 - General geometry will be properly scaled
- Connections
 - Custom design
 - Heptagonal rings between sections
- Wrap tower in fabric

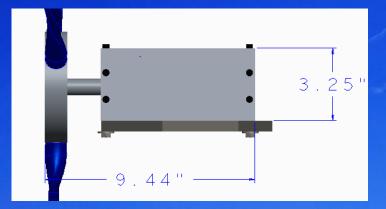


Meros 11

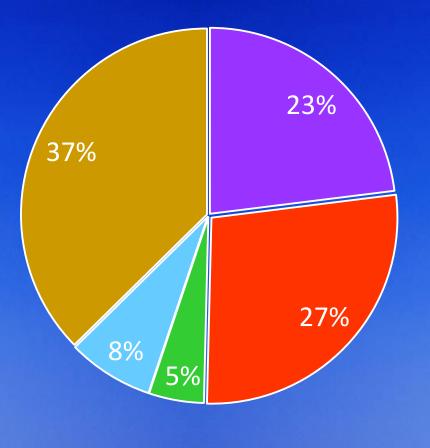
Manufacturing Tower Prototype

- Steel preparation cleaning, cutting, grinding
- Fabricate sections in the machine shop
- Connections
 - Heptagonal rings: welded
 - Columns: plugs
 - Bracing: bolts


Manufacturing Tower Prototype


- Heptagonal rings and plugs are ready to be welded
- Next steps:
 - Cut column and bracing members
 - Assemble tower
 - Wrap tower in fabric

Nacelle Prototype



- Nacelle in progress with machine shop
- Plan to couple motor for power generation

Delie

Budget

Material	Cost (\$)
Steel	460.49
Blades	547.20
E-glass & Epoxy	95.50
Additional Parts	149.49
Remaining	747.32

Delie 15

Steel
 Additional Parts
 Remaining

E-glass & Epoxy

Challenges Faced

McCallister 16

- Greatly over estimated original forces
- Modal analysis on blades
- Scaling of blades for 3-D printing
- Scaling cost of final design
- Machine shop behind schedule

Future Work

- Complete modal analysis of blades and tower
- Integrate power generation system
- Finish prototype
- Validate revenue approximations for turbine design

McCallister 1

Summary

- Final designs were chosen for tower structure and blade design
- Construction of blades complete, waiting on machine shop

McCallister 18

- Next Steps
 - Complete revenue analysisFinish prototype

References

- http://www.nrel.gov/docs/fy09osti/38060.pdf
- http://wind.nrel.gov/public/bjonkman/TestPage/FAST.pdf
- http://www.gettyimages.com/detail/news-photo/aerial-viewof-field-taken-from-goodyear-blimp-above-newsphoto/457716040

McCallister 19

- http://www.ncdc.noaa.gov
- http://www.nrel.gov/midc/nwtc_m2/

Questions?