Team 25: Taller Wind Turbine for Low Wind Speed Regions

Sponsor: Dr. Sungmoon Jung Advisor: Dr. Kunihiko Taira

Authors: Steven Blanchette (ME) David Delie (ME) Kimberly Martinson (CE) Jeremiah McCallister (ME) Abigail McCool (ME) Theodore Meros (CE)

Here Harden I

Project Overview

Current 80 meter wind turbines are not cost-effective for use in the Southeastern U.S. due to lower average wind speeds.

Horizontal Axis Wind Turbine

Current Specs:

- 1-2 MW
- •
- Blades ~60 m long •
- \$72/MWh

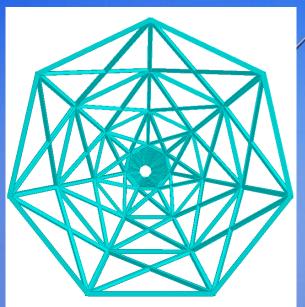
- **Project Specs:**
- 5 MW
- Avg. 80 m hub height Taller structure (157.5m)
 - Design lighter blades of • same size

Meros

Budget: \$2,000 •

Preliminary Designs

1. Heptagonal Lattice Tower


2. Triangular Lattice Tower

Final Design Layout

- Incorporates two previous designs
 - 7 sides allows for wider base, restricted by semi trailer size
 - Tubular rings increase ease of construction and curvature of exterior fabric
 - Requires only one application of field welding

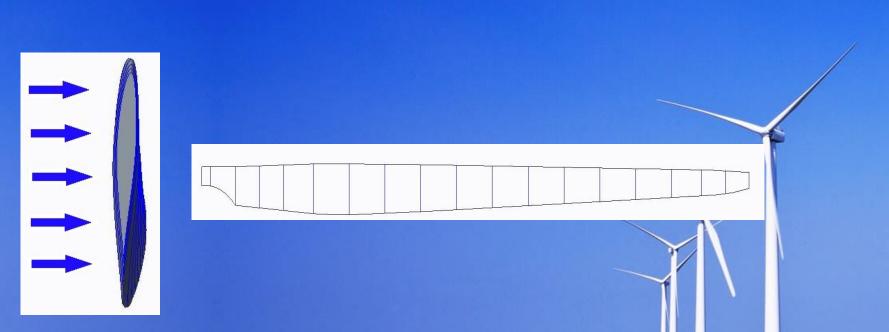
- 157.5 meter hub height
- Typical Bracing: HSST 12x12
- Typical Column: HSST 14x14
- Nacelle+Blades = 335 tons
- Steel Selfweight ~ 800 tons
- Total thrust: 144 kips
 - Designed 200 kips
- Earthquake load: 2.0 short term

Meros

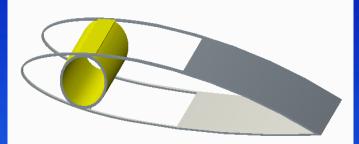
Design Process

Meros 5

Design in STAAD Pro V8i

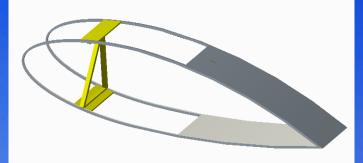

- Select optimization for 360 $^{\circ}$
- Wider base: "shortens" moment arm
- Fixity of members
- Typical Sections: 20 spans, 7 sets
- Application and magnitude of loading
- Deflection 3'
- No failed members; typical sections strength ratio range from 0.6-0.9
- Modal Analysis

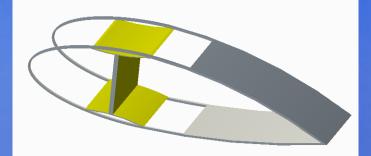
Blade Force Analysis


- Pressure $P = \rho_{air} c_d v^2$ P = 500 Pa
- Wind Load
 Shape Factor $F = PA_s$ $F = 102 \ kN$

 $\varphi_B^e = \frac{12I}{A^2}$

McCallister 6




Initial Bracing Beams

Internal Cylinder

- $\varphi_B^e = 8.5$
- Too heavy

Internal Truss

- $\varphi_B^e = 22.5$
- Many points of failure
- Complicated construction

McCallister 7

Single Post

- $\varphi_B^e = 22.5$
- Curved surface
- Difficult fabrication

Selected Blade Interior

Triple I-Beam

- $\varphi_B^e = 22.5$
- Good distribution of load

McCallister 8

• Lightweight

Material for Bracing Beam

Materials	Average Young's Modulus (GPa)	Density (<u>kg</u>)	Yield Strength (MPa)	Normalized Cost $(\frac{\$}{kg})$
Aluminum	75.0	2,700	287.0	1.60
Carbon Steel	208.0	7,850	322.5	0.67
Bamboo	17.5	700	40.0	1.80
Aluminum	Young's Modulus (GPa)	Density $(\frac{kg}{m^3})$	Yield Strength (MPa)	Cost (\$)
Aluminum 2024	73.1	2,780	324	16.38
Aluminum 7075	71.7	2,810	503	18.05
Aluminum 6061	68.9	2,700	276	6.37

McCallister 9

Fabric Material Selection for Shell of Blades

	Fabrics	Young's Modulus (GPa)	Density $(\frac{kg}{m^3})$	Failure Strain (%)	Cost $(\frac{\$}{kg})$
	E-glass	70-77	2.55-2.64	4.5-4.9	1.25-2.50
	S-glass	86-90	2.46-2.49	5.4-5.8	15-25
	R-glass	84-86	2.55	4.8	15-25
•	Carbon Fibers (12K)	220-240	1.7-1.8	0.7	44.2

Delie

The shell of the blades will be made mostly from E-glass with the use of carbon fiber in areas with high stresses.

Resin Selection for Shell of Blades

Resin	Weight (0.4)	Strength (0.2)	Stiffness (0.2)	Cost (0.2)	Total
Polyester	4	5	4	7	4.8
Vinyl Ester	5	6	6	6	5.6
Ероху	7	8	8	4	6.8

Delie

Epoxy was selected for the resin.

Core Material Selection for Shell of Blades

- End-Grain Balsa- high strength and stiffness, inexpensive, more dense
- Styrene Acrylonitrile (SAN) Foam- good strengthstiffness to weight ratio, toughness
- Poly Vinyl Chloride (PVC) Foam- good strengthstiffness to weight ratio, not compatible with all materials

Delie 12

 Polyethylene Terephalate (PET) Foam- new technology, recyclable, made from abundant materials

SAN foam was selected for the core.

Future Work

- Combined Modal/Fatigue Analysis
- Cost to Power Ratio
- Pricing for blade molds
- Ordering of material to construct blades

Delie

- Procurement of steel for tower
- Prototype construction

Summary

- Low wind speeds in southeast US inspired desire for taller wind turbine
- Final designs chosen for tower structure and blade design

McCallister 1

- Currently getting quotes for purchasing.
- Next Steps
 - Obtaining materials
 - Building prototype

References

- http://www.aerospacemetals.com/contact-aerospacemetals.html
- http://www.onlinemetals.com/
- http://www.nrel.gov/docs/fy09osti/38060.pdf
- http://wind.nrel.gov/public/bjonkman/TestPage/FAST.pdf

McCallister 15

Questions?