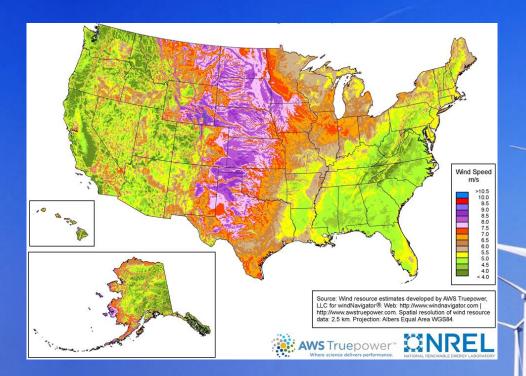
Team 25: Taller Wind Turbine for Low Wind Speed Regions

Sponsor: Dr. Sungmoon Jung Advisor: Dr. Kunihiko Taira



Authors: Steven Blanchette (ME) David Delie (ME) Kimberly Martinson (CE) Jeremiah McCallister (ME) Abigail McCool (ME) Theodore Meros (CE)

Here Harden I

Problem Statement

• Traditional wind turbines are not effective in the Southeastern U.S.

McCool 2

Project Goals

Horizontal Axis Wind Turbines

Current Specs:

- 1-2 MW
- Avg. 80 m hub height
- Blades ~60 m long
- \$72/MWh

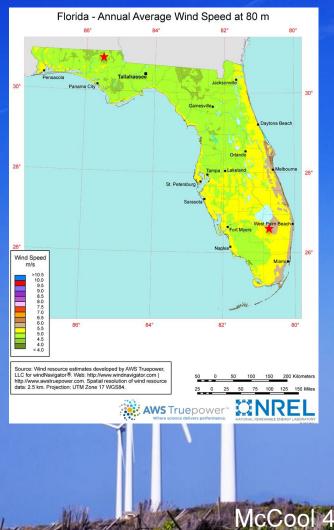
Project Specs:

• 5 MW

- Taller structure (120-160m)
- Design lighter blades of same size

McCool 3

• Budget: \$2,000


Early Challenge

- Lack data for wind speed above 80 m
- Consulted with Dr. Powell (COAPS)

$$U_1 = \frac{U_*}{k} \ln\left(\frac{z_1}{z_0}\right)$$

Tower Materials

Concrete

- Less maintenance
- Heavy
- Limited transportation

Steel

- High strength/weight ratio
- Easily transported
- Ductile
- Recyclable

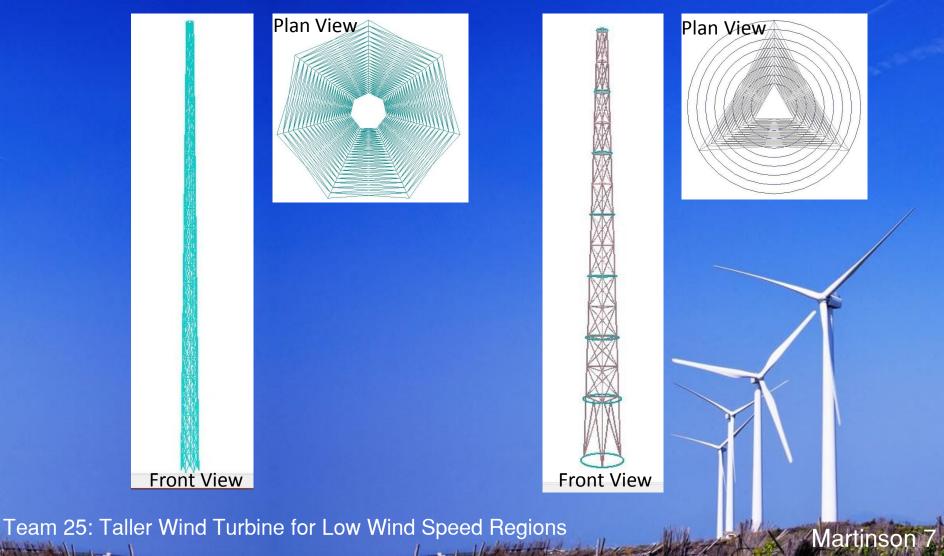
Martinso

Tower Design

- Steel Tube
 - Most common
 - Very stable
 - Not economical for taller towers

Space Frame

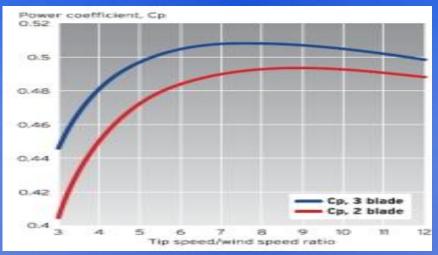
 Less material
 Easily transported
 On site assembly


Martinson

Preliminary Designs

1. Heptagonal Lattice Tower

110 1 11 2

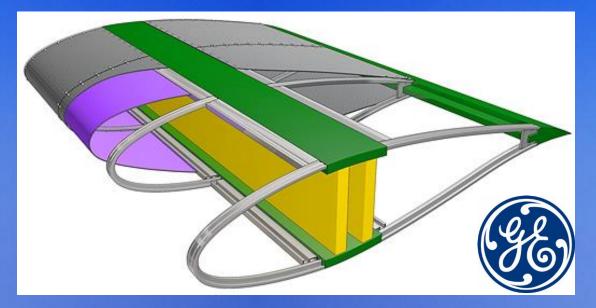

2. Triangular Lattice Tower

Aerodynamic Performance Analysis

2 Blades

- Lighter turbine weight (~13%)
- Lower gearing ratio needed
- Less balanced
- Louder operation

3 Blades


Blanchette 8

- Increased weight
- More difficult installation
- Restricted airflow
- Faster yaw operations
- More efficient
- Lower noise levels

Blade Internal Design

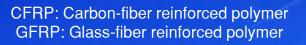
Blanchette 9

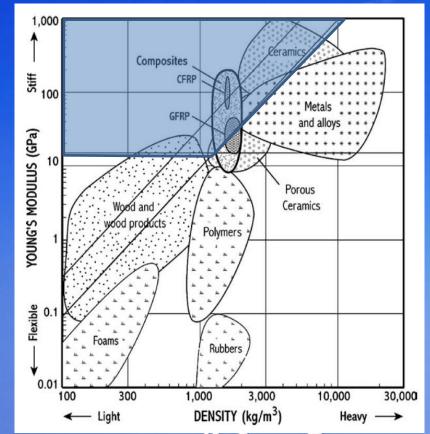
- Contemporary 2 post hollow
 - 2 post structure in middle of blade
 - New materials
- Fabric wrapped

Blade Internal Design

Blanchette 10

Single Post Double Shell


1 post structure in middle of blade
2 curved hollow shells
Wider support area
Less material



Blade Materials

- Fabric Composites
 - Kevlar carbon hybrid
 - Carbon fiber
 - Canvas
- Resins
 - Remove surface roughness

Protect from environment

Team 25: Taller Wind Turbine for Low Wind Speed Regions

Blanchette 1

Future Work

Blanchette 1

- Force analysis with NREL FAST
- Comparing cost of manufacturing vs generation
- Determine optimal structure & blade design
- Prototype scaled model

Summary

- Low wind speeds in southeast US inspired desire for taller wind turbine
- Designing a horizontal axis turbine with 3 blades

McCool 13

- Taller lattice tower structure
- Lighter blades
- Currently in design process
- Next Steps:
 - Force analysis
 - Selecting design

References

- Ashby, Michael; 2011; Materials Selection in Mechanical Design, Chp 4, Fig 4.3
- http://www.gereports.com/post/74545105851/can-you-knit-a-wind-turbinege-wind-turbine-blades
- http://www.ge-energy.com/products_and_services/products/wind_turbines/ space_frame.jsp

McCool

- http://reuther-stc.com/windenergy-components-and-storage-tanks/windenergy-components-for-wind-tower-plants/steel-tube-wind-towers/
- http://apps2.eere.energy.gov/wind/windexchange/wind_maps.asp
- Team 25 Project Description; FSU Blackboard

Questions?