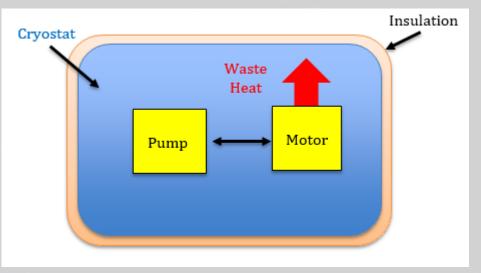
Group 24

Magnetically Coupled Pump/Mixer System for Cryogenic Propellant Tank Destratification

Group Members:

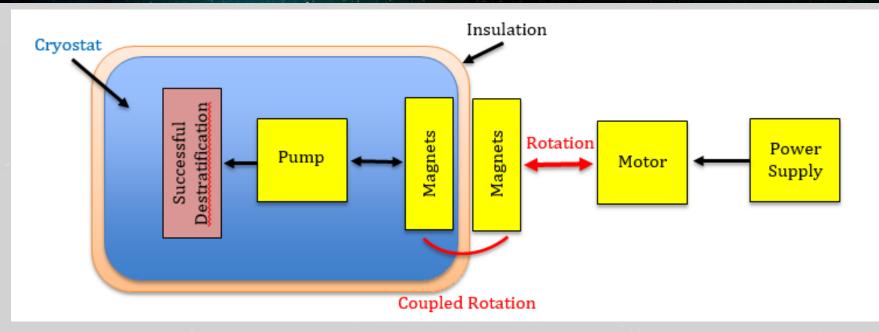
Matthew Boebinger Kahasim Brown Anthony Ciciarelli Janet Massengale

Sponsor:NASA Marshall Space Flight CenterAdvisor:Dr. Wei GuoInstructors:Dr. Shih, Dr. Helzer, and Dr. Gupta


Agenda

- Background
- Project Description and Objectives
- Proposed Design and Materials
 - Component Analysis
 - Provided and Required
- Budget
- Summary

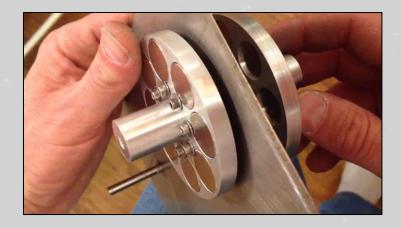
Background


- Long term storage of cryogens
 - Pressure control
 - Destratification
- Insulation
 - Prevent environmental
 - space/vacuum heat leak
- Mixing the propellants
 - More time before venting
- Current system
 - Foam Insulation and MLI
 - Various AC single and 3 phase motors
 - Motor couple to a pump operating in submerged conditions

Block diagram of current system

3

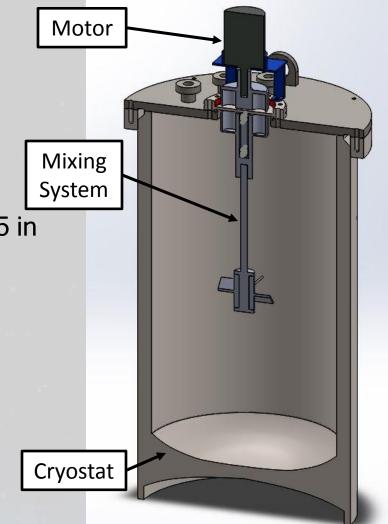
Project Description

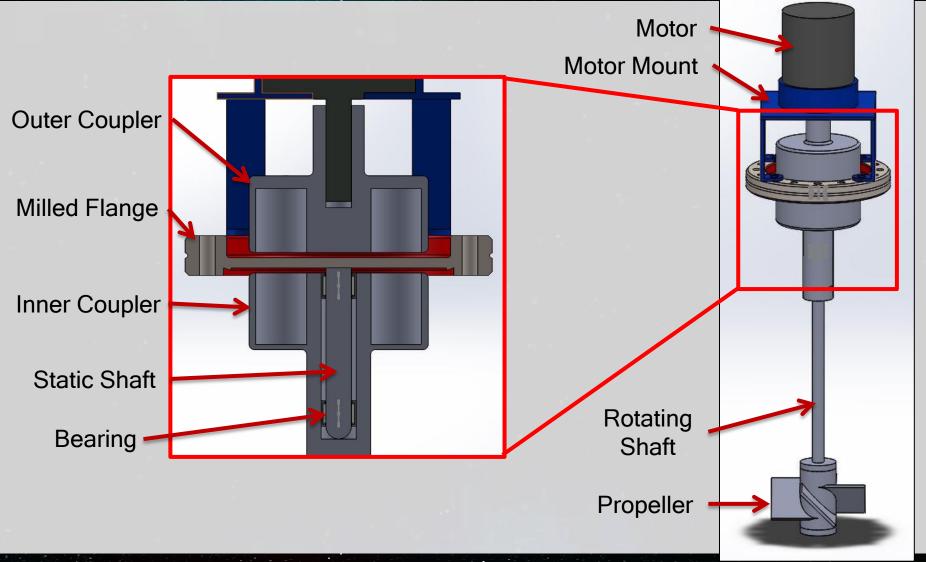


- Design an electric motor-pump/mixer unit that makes use of magnetic coupling technology.
 - The motor must be on the outside of the cryogenic tank
 - Incorporate insulation between the coupling and tank wall

Group 24 Janet Massengale

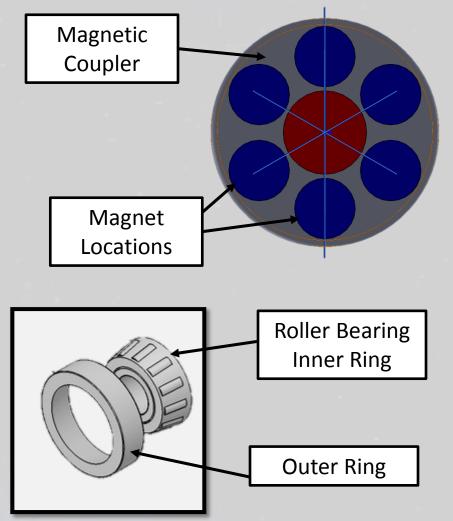
Objectives


- Minimize heat addition
- Must produce volumetric flow rate of 5-15 gpm
 - The pressure rise due to the pump must reach 5psid
- Magnetically couple motor shaft to mixer shaft
- Must be compatible with current tank model
- Minimum number of parts and be compact in design



Proposed Design

- Suspension
 - Bearing System
- Magnetic Coupling
 - Six 1" diameter magnets coupled through milled flange
 - Distance between the couplers <0.5 in
- Motor
 - Provides sufficient power to mix 15 gpm and pressure rise up to 5 psid
- Size Constraints
 - Coupler and Propeller fit through 4" port


Proposed Design

Group 24 Matthew Boebinger

Bearings and Magnets

- Six 1" diameter magnets used on each coupler
 - Largest possible magnets used
 - Strength of the Coupling magnets must be much greater than the produced Torque
- Suspension of inner component of design require use of Tapered-Roller Bearings
 - Can handle both radial and thrust loads

Pumping Capacity

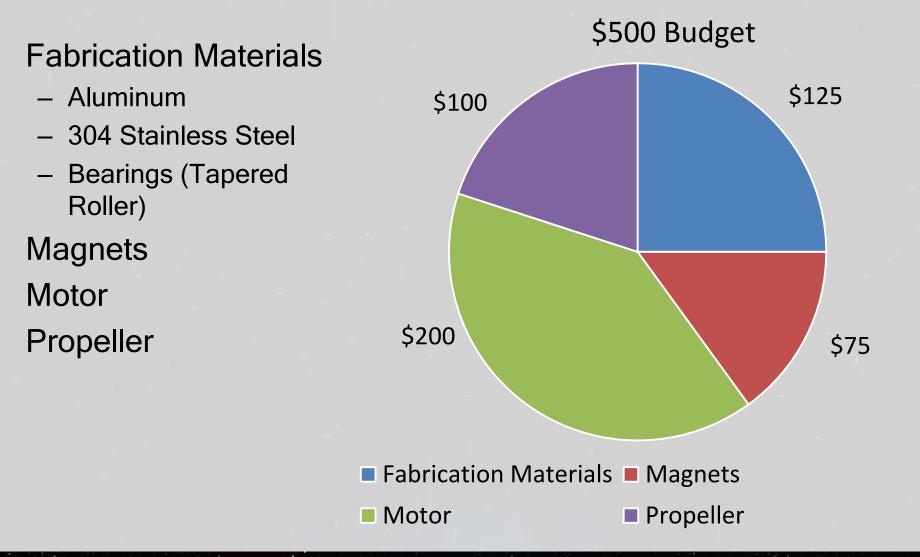
- From the given volumetric flow rate of 15 gpm
 - The pump shaft angular velocity found to be 115 *rpm*
- The Head, h = 12.45 ft, of the pump was calculated using the density of LN ($\rho_{LN} = 57.8 \frac{lb}{ft^3}$) and the desired pressure differential of 5 *psid*
- From this Head the Power will be determined, P = 0.044 hp
- Using this Power and the angular velocity of the shaft the motor will be selected

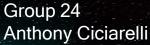
Provided Materials

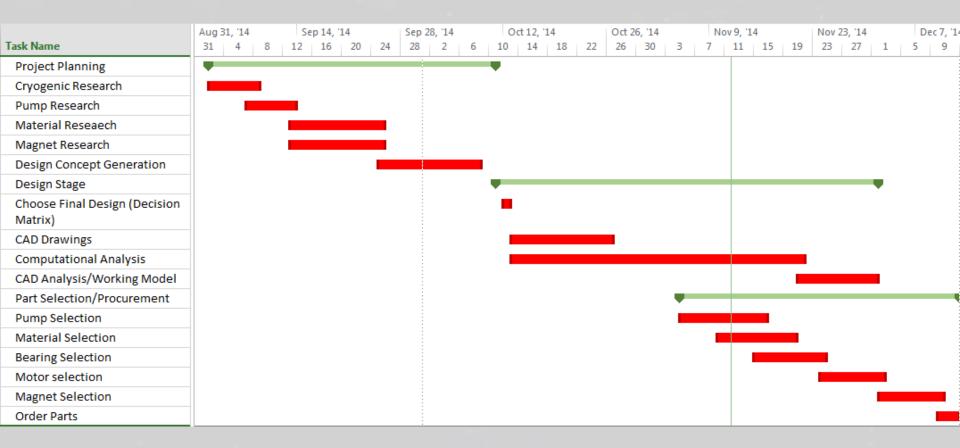
NASA

- Cryofab CF 1424-F
- 6" ConFlat stainless steel flange
- Copper gasket (sealing)
- NHMFL
 - Indium wire (sealing)

Indium Wire




6" ConFlat stainless steel flange


Cryofab CF 1424-F model cryostat that will be used in the project

Required Materials and Budget

Project Timeline

Summary

- The Project
 - Reduce heat addition
 - Magnetic coupling technology
- Design proposal
 - Solves the issues of heat addition
 - Satisfies the objectives
- Challenges
 - Sealing, Size, and Supporting the rotating Shaft
- Future Plans
 - CAD Analysis
 - Fabrication and Testing

References

- [1] Senior Design Project Definition Group 24. N.p.: n.p., n.d. PDF.
- [2] W., Van Sciver Steven. Helium Cryogenics. New York: Plenum, 1986. Print.
- [3] "Magnetic Couplings | Technology | Magnomatics." Magnetic Couplings | Technology | Magnomatics. N.p., n.d. Web. 25 Sept. 2014.
- [4] "HowStuffWorks "Parts of the Tesla Turbine"" *HowStuffWorks*. N.p., n.d. Web. 09 Oct. 2014.
- [5] Pump, Nikkiso Cryogenic. *NIKKISO CRYOGENIC PUMP* (n.d.): n. pag. Web.

Questions

For more information and updates: http://eng.fsu.edu/me/senior_design/2015/team24/


Group 24 Anthony Ciciarelli

Project Specifications

Requirement	Specification
Tank Size	 Height: 29 in Outer Diameter: 16 in Inner Diameter: 14 in Gross Capacity: 60 Liters
Insulation	 0.5 in of foam >20 layers of multi-layer insulation (MLI)
Mounting	 Mounted to 6 in flange Flange has 4 in port into tank
Pump Motor	 Variable Flow Rate : 5 - 15 gpm Generates 5 psid rise in pressure Mixer/Pump must reach 12 inches into tank
Additional Requirements	 Tank must be adiabatic to surroundings Pump shaft must be magnetically coupled to the motor shaft Friction must be held to a minimum System must be compact Materials used for the magnetic housing and flange must be non magnetic Materials must withstand extremely cold temperatures between 63K - 77.2K

Prototype Testing

- Preliminary Magnet coupling test
 - Build a square tank for water tests
- Pressure tests
 - Fitted pressure gauge on the cryostat
- Flow rate
 - Fabricated square tank (Water)
 - Fluid transfer between two cryostats (Liquid Nitrogen)

