Group 24

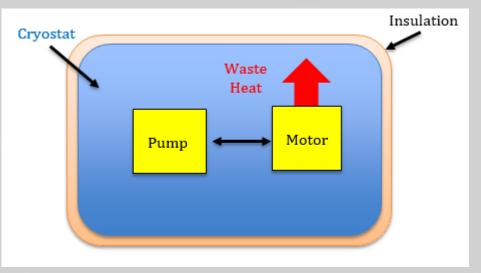
Magnetically Coupled Pump/Mixer System for Cryogenic Propellant Tank Destratification Spring 2015 Project Update

Group Members:

Matthew Boebinger Kahasim Brown Anthony Ciciarelli Janet Massengale

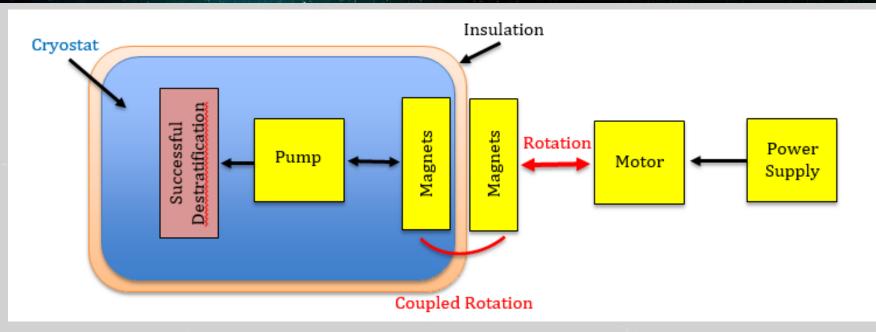
Sponsor:NASA Marshall Space Flight CenterAdvisor:Dr. Wei GuoInstructors:Dr. Shih and Dr. Gupta

Agenda


- Background and Project Definition
- Approved Design
- Calculations
 - Pumping Capacity
- Budget and Procurement
- Future Plans
 - Fabrication and Testing
- Conclusion

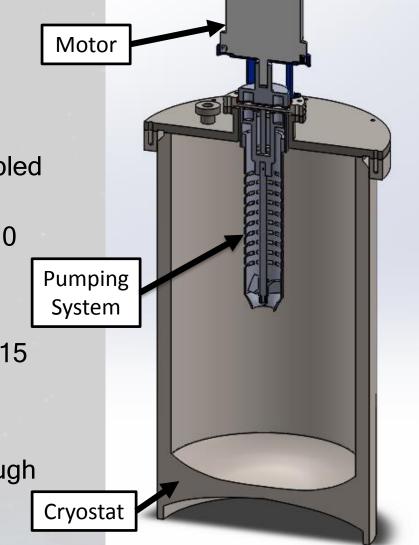
Group 24 Kahasim Brown

Background

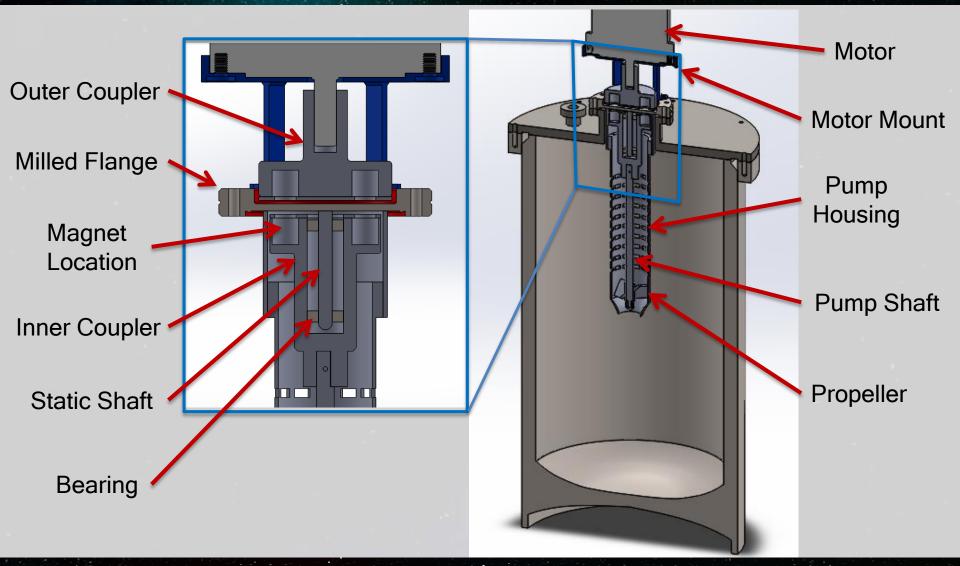

- Long term storage of cryogens
 - Pressure control
 - Destratification
- Insulation
 - Prevent environmental
 - space/vacuum heat leak
- Mixing the propellants
 - More time before venting
- Current system
 - Foam and insulation
 - Various AC single and 3 phase motors
 - Motor couple to a pump operating in submerged conditions

Block diagram of current system

Group 24 Kahasim Brown


Project Description

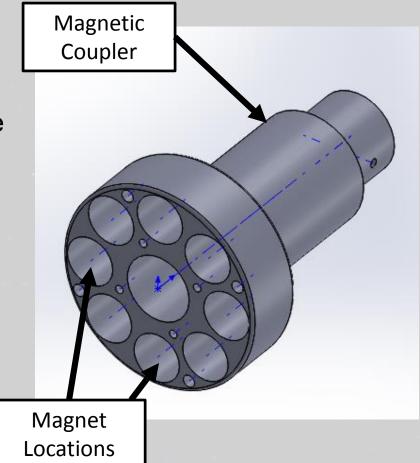
- Design an electric motor-pump/mixer unit that makes use of magnetic coupling technology.
 - The motor must be on the outside of the cryogenic tank
 - The entire pump system must fit through a 3.75 inch port on top of the tank


Approved Design

- Suspension
 - Bearing System
- Magnetic Coupling
 - Eight 0.75" diameter magnets coupled through milled flange
 - Distance between the couplers <1.0 in
- Motor
 - Provides sufficient power to mix 5-15 gpm and pressure rise up to 5 psid
- Size Constraints
 - Coupler and Pump System fit through 3.75" port

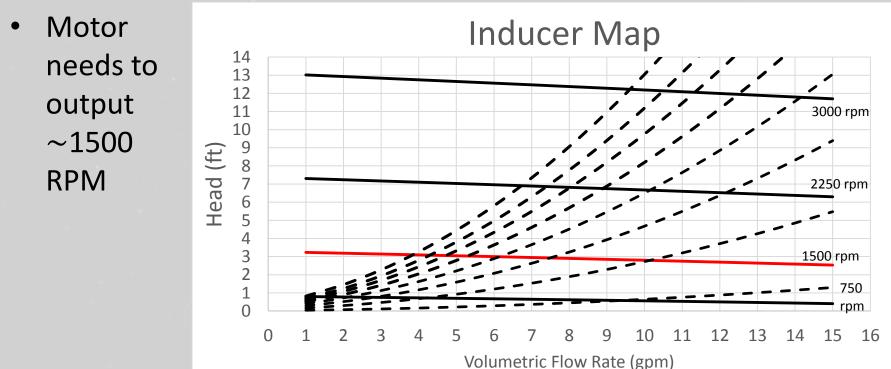
Group 24 Matthew Boebinger

Approved Design

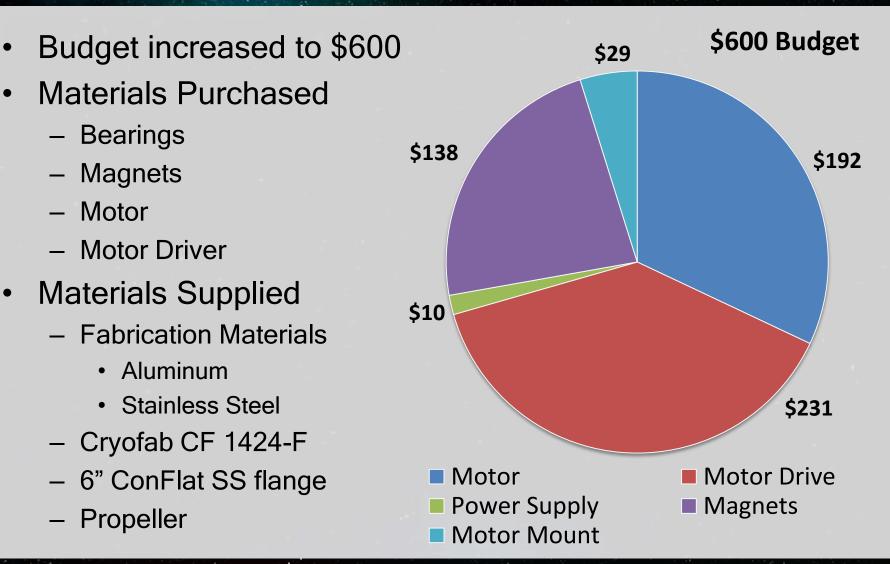


Group 24 Matthew Boebinger

6


Bearings and Magnets Calculations

- Eight 0.75" diameter 1 T magnets used on each coupler
 - Largest possible magnets used
 - Strength of the Coupling > Torque
 - Maximum strength to be determined by spring gage test
- Suspension of inner component of design require use of ball bearings



Pumping Calculations

- Head needed found to be 3 ft.
- Power of motor found to be 0.02 hp.
- Pumping calculations using non-dimensionalized flow coefficient and RPM

Budget and Procurement

Group 24 Janet Massengale

Future Plans

- Determine strength of magnets
- Machining
 - Magnet housing, pump housing, motor mount, etc.
- Fabrication and building
 - Magnet safety
- Water Testing
 - Fabricate an open square tank
- Liquid Nitrogen Testing
 - Tested inside the cryostat
 - Fluid transfer between two cryostats or optics
 - NHMFL cryogenic safety procedure

Project Timeline

					Janua	ry 2015		February 201	5		March 20	15			April 2	015	
	Task Name 👻	Duration 🗸	Start 👻	Finish 👻		-	12 15 18 2			7 20 23 26			16 19	22 25 28			12 15
1	Procurement	15 days	Wed 1/7/15	Tue 1/27/15		V											
2	Finish Procuremnt/Order Raw Materials	5 days	Wed 1/7/15	Tue 1/13/15													
3	Obtain Raw Materials	11 days	Tue 1/13/15	Tue 1/27/15													
4	Fabrication	20 days	Tue 1/20/15	Sat 2/14/15					T								
5	Wire motor to motor controller	5 days	Tue 1/20/15	Sat 1/24/15													
6	Fabricate Flange	4 days	Tue 1/27/15	Fri 1/30/15													
7	Fabricate Motor Mount	4 days	Wed 1/28/15	Sat 1/31/15				l i i i i i i i i i i i i i i i i i i i									
8	Fabricate pump housing anchor	11 days	Thu 1/29/15	Thu 2/12/15													
9	Fabricate Couplers	12 days	Thu 1/29/15	Fri 2/13/15													
10	Fabricate Static Shaft	9 days	Thu 1/29/15	Tue 2/10/15													
11	Fabricate Magnet holder	4 days	Thu 1/29/15	Tue 2/3/15													
12	Fabricate Pump shaft	13 days	Thu 1/29/15	Sat 2/14/15													
13	Fabricate Pump housing	13 days	Thu 1/29/15	Sat 2/14/15													
14	Assembly	8 days	Tue 2/17/15	Thu 2/26/15					T	V							
15	Weld Static shaft and anchor to flange	4 days	Tue 2/17/15	Fri 2/20/15													
16	Secure motor mount and motor to flange	3 days	Tue 2/17/15	Thu 2/19/15													
17	Attach inner coupler to static shaft	2 days	Sat 2/21/15	Sun 2/22/15													
18	Attach pump shaft to coupoler	2 days	Sun 2/22/15	Mon 2/23/15													
19	Attach inducer to pump shaft	2 days	Mon 2/23/15	Tue 2/24/15													
20	Attach pump housing to anchor	2 days	Sat 1/24/15	Sun 1/25/15													
21	Attach motor to outer coupler	3 days	Thu 2/19/15	Sun 2/22/15													
22	Testing	14 days	Thu 2/26/15	Tue 3/17/15						V			V				
23	Test design in water	3 days	Thu 2/26/15	Mon 3/2/15													
24	Test design in Liquid Nitrogen	6 days	Mon 3/2/15	Mon 3/9/15													
25	Compile Data	6 days	Tue 3/10/15	Tue 3/17/15													
26	Operation Manual	7 days	Thu 3/26/15	Fri 4/3/15													
27	Open House Final Presentations	6 days	Thu 4/9/15	Thu 4/16/15													į

Group 24 Janet Massengale

Summary

- Design an electric motor-pump/mixer unit that makes use of magnetic coupling technology.
- What we have done
 - Final design approved
 - Procured electrical and mechanical components
- Future Plans
 - Magnet testing
 - Fabrication and constructing of prototype
 - Water testing
 - Liquid nitrogen testing

References

- [1] Senior Design Project Definition Group 24. N.p.: n.p., n.d. PDF.
- [2] W., Van Sciver Steven. Helium Cryogenics. New York: Plenum, 1986. Print.
- [3] "Magnetic Couplings | Technology | Magnomatics." Magnetic Couplings | Technology | Magnomatics. N.p., n.d. Web. 25 Sept. 2014.
- [4] "HowStuffWorks "Parts of the Tesla Turbine"" *HowStuffWorks*. N.p., n.d. Web. 09 Oct. 2014.
- [5] Pump, Nikkiso Cryogenic. *NIKKISO CRYOGENIC PUMP* (n.d.): n. pag. Web.

Questions

For more information and updates: http://eng.fsu.edu/me/senior_design/2015/team24/

Group 24 Janet Massengale

Project Specifications

Requirement	Specification
Tank Size	 Height: 29 in Outer Diameter: 16 in Inner Diameter: 14 in Gross Capacity: 60 Liters
Insulation	 0.5 in of foam >20 layers of multi-layer insulation (MLI)
Mounting	 Mounted to 6 in flange Flange has 4 in port into tank
Pump Motor	 Variable Flow Rate : 5 - 15 gpm Generates 5 psid rise in pressure Mixer/Pump must reach 12 inches into tank
Additional Requirements	 Tank must be adiabatic to surroundings Pump shaft must be magnetically coupled to the motor shaft Friction must be held to a minimum System must be compact Materials used for the magnetic housing and flange must be non magnetic Materials must withstand extremely cold temperatures between 63K - 77.2K