The Gopher Tortoise Scope

Sponsored by

Kim Sash &

The Tall Timbers Research Station and Land Conservancy In partnership with

Dr. Gupta, Dr. Shih, Dr. Clark, Dr. Harvey, Dr. Frank & The FAMU-FSU College of Engineering

Presented by

Jordan Muntain, ME

Lester Nandati, Lead ME

Sina Sharifi-Raini, EE

Also featuring

Jane Bartley, ME (team leader)

Bridget Leen, ME

Colin Riley, Lead EE

Overview

- Status update on subsystem design
 - User interface
 - Tether
 - Rover
- Project management
 - Part acquisition
 - Scheduling
 - Budget

<u>Background</u>

- Tall Timbers researches the gopher tortoise
 - Keystone species
 - Burrows average 6 m long (maximum of 15 m)
- Goal is to enhance capability of taking population surveys with an improved scoping mechanism

Rover Materials

- Permanent Parts
 - IR LED camera
 - Durable tracks [1]
 - Motor drivers
 - Aileron mechanism
 - Monitor
 - Arduino Micro
 - Raspberry Pi B+
 - Gamepad

Communication

- Successful
 - Gamepad → Raspberry Pi B+
 - Raspberry Pi B+ ←→ Arduino Micro
- Progressing
 - Camera → Raspberry Pi B+
 - Gamepad → Arduino Micro via Raspberry Pi B+
 - Arduino → servo and motor drivers
 - Temp/humidity → Raspberry Pi B+ via Arduino Micro

Tether

- Electrical wiring
 - RCA
 - Active USB
 - 10-gauge speaker wire
- Kevlar sheath
 - Weather and abrasive contact durable
 - Lightweight (0.21 kg for 15 m) [2]
- No steel guide wire
 - Slack on wires inside body
 - Stops on wires and sheath

Camera Movement

- Simplified design
 - Aileron system
 - Panning only
- Justifications
 - Wide angle lens
 - Simpler mechanism
 - Less space
 - Servo motor

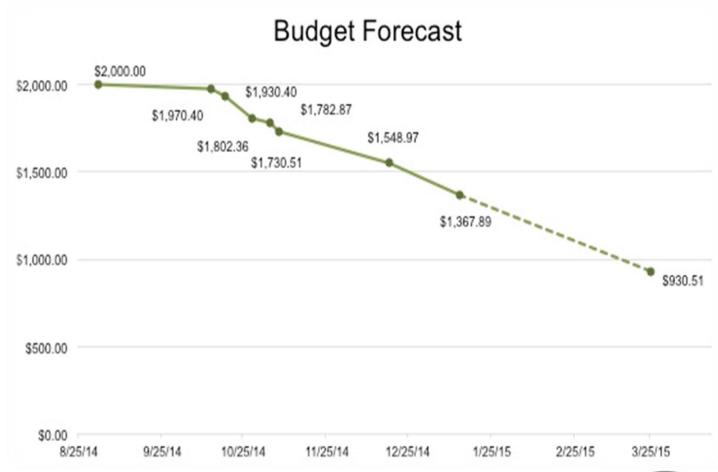
Casing

- Permanent parts
 - 1/8 inch Plexiglas
- Construction
 - Laser cut
 - Adhere with silicone sealant
 - L-bars
 - Removable top

Part Acquisition

- Purchased over break
 - 10-gauge speaker wire
 - Monitor
 - 25W/3A DC volt converter battery regulator
 - USB Hub for Raspberry Pi B+
 - Durable tracks
- Need to be purchased
 - Tether components
 - Battery

Scheduling


- Progress has slowed
 - Material acquisition delays
 - Group organization difficulties
 - Feasibility of components
 - Re-evaluating product needs
- Mitigations
 - Split into subgroups
 - Communicate with advisors
 - Assess meeting activities and time

<u>Budget</u>

- Still over 70% of budget available
- Spending changes
 - Invest in more expensive parts
 - Final components
 - Allocate 20% to prototype testing

Figure N: Burn Chart

Lester Nandati

Conclusion

- Progress on the rover:
 - Parts acquired
 - Communication progress
 - Camera movement
 - Casing and tether design
- Future work for the final product:
 - Budget and schedule planning
 - Determine assembly specifics

References

- 1) "Lynxmotion Track 2" Wide x 21 Links ~23" TRK-01." Mechanics, RobotShop, 2015. Web. 16 Jan. 2015. http://www.robotshop.com/en/lynxmotion-track-trk-01.html.
- 2) "Kevlar® (KV) Expandable Braided Sleeving." CableOrganizer. CableOrganizer.com, 2015. Web 16 Jan. 2015. http://www.cableorganizer.com/kevlar/.

Questions?

For more information, please visit: www.eng.fsu.edu/me/senior_design/2015/team21/

