## High Cycle Fatigue of Electroactive Membranes

### **Interim Design Review**

March 17, 2015



AME Aeropropulsion Mechatronics & Energy Center Team 20:

Nicholas Dawkins Matthew Drys Kristina Dukes

Adriane Guettler

Victor Odewale

Advisor: Dr. Oates Sponsors: Dr. Clark and Dr. Oates Instructor: Dr. Gupta



## **Project Scope**

**Need Statement:** There is a lack of information on the fatigue of electroactive membranes.

- Electroactive membranes are being studied for application onto robots.
- There is insufficient data on the fatigue behavior for electroactive membranes [1]
- The purpose of this project is the design and implementation of a fatigue mechanism for electroactive membranes

Oates, William and Jonathan Clark. "High Cycle Fatigue of Electroactive Membranes." Florida A&M/Florida State University, 2014. Print.
 Newton, Jason. "Design And Characterization Of A Dielectric Elastomer Based Variable Stiffness Mechanism For Implementation Onto A Dynamic Running Robot." Thesis. Florida State University - College Of Engineering, 2014. Print



Figure 1. iSprawl Robot with VHB membrane stack[2]

Group Number 20 Slide 2 of 16 Nicholas Dawkins Project Update

Group Number 20 Slide 3 of 16

## **Project Scope**

**Goal Statement:** Design and build a device that produces high cycle sinusoidal mechanical fatigue of electroactive membranes.

### **Objectives:**

- Accurately measure the fatigue placed on the specimen
- Produce various frequencies of cycling
- Produce varying stroke distances to displace the membrane
- Allow for tracking of the displacements controlled by the fatigue machine
- Measure the load associated with the stroke by implementing with the MTS machine



Figure 2. VHB membrane specimen

Nicholas Dawkins Project Update

## **Project Scope**

### Constraints

- System should be a tabletop mechanism that is mounted to the MTS machine
- Vary stroke 2.5mm, 5mm, 7.5mm
- Vary frequency from 0 to 25 Hz
- Implement LVDT (Linear Variable Differential Transducer)
- Produce consistent functionality for various specimens
- Test 1 to 5 specimens at a time
- Complete within the budget



Figure 3. MTS machine

Nicholas Dawkins Project Update

Group Number 20 Slide 4 of 16

## Selected Design - Crank Slider Mechanism



Group Number 20 Slide 5 of 16 Nicholas Dawkins Project Update

### **Assembled Mechanism**



#### **Remaining Assembly**

- Safety shield
- ABS frame holder
- LVDT mount

Group Number 20 Slide 6 of 16 Nicholas Dawkins Project Update

### Selected Motor & Controller





#### **Motor Requirements**

- 1500 rpm
- 0.7Nm

#### **Compact Face Mount DC Motor**

- 24V
- 13A
- 3500 rpm @ 0.72 Nm

Figure 8. Compact DC Motor [3]

Figure 9. Motor Controller[4] RoboClaw Motor Controller

- USB or serial
- 2 channel
- 60A

[3] http://www.mcmaster.com/#59835k63/=vjpspd[4] https://www.pololu.com/product/2393

Group Number 20 Slide 7 of 16

### Approach to Assembly - Control



Group Number 20 Slide 8 of 16

## Testing

### **Completed**

- Power needed to operate at 25 Hz with no load measured using stroboscope
  - 1.82 A @ 9.6V

#### <u>Future</u>

- Variable stroke distances using LVDT
  - Data acquisition to standardize produced displacement
- Frequency using LVDT
  - Measure time between peaks of sine wave

## **Challenges Faced**

- Assembly
  - Guide rod alignment, friction
- Implementation of LVDT
  - Placement between MTS frame and mechanism
  - Wiring to BNC board for data acquisition
- Possible hardware damage on controller
- Controller use
  - Implementing code through PC

## Future Work

- Improve current mechanism
  - Minimize friction
- Reliability testing of mechanism (precise data)
- Open loop testing now priority over control
- Return controller for repair
- Continuation/Integration of user interface to the mechanism
- FMEA
- Machining of final components
  - Lower linkage and coupler cap for 2.5 mm and 5 mm
  - Tabletop stand, frame holder, safety shield

## Schedule

|                                                                            |             |             | Jan 4, '15 Jan 18, '15 Feb 1, '15 Feb 15, '15 Mar 1, '15 Mar 15, '15 Mar 29, '15 |
|----------------------------------------------------------------------------|-------------|-------------|----------------------------------------------------------------------------------|
| Task Name 👻                                                                | Start 👻     | Finish 👻    | F T S W S T M F T S W S T M F T S W S T M F T S W                                |
| Material Procurement                                                       | Mon 1/5/15  | Fri 1/23/15 | • • • • • • • • • • • • • • • • • • •                                            |
| Finalize materials list                                                    | Mon 1/5/15  | Wed 1/14/15 |                                                                                  |
| Order materials and components                                             | Wed 1/14/15 | Fri 1/23/15 |                                                                                  |
| Production of Mechanism                                                    | Mon 1/12/15 | Wed 2/18/15 | ++                                                                               |
| Finalize all part drawings                                                 | Mon 1/12/15 | Tue 1/20/15 |                                                                                  |
| Submit drawings to machine shop                                            | Wed 1/21/15 | Tue 1/27/15 |                                                                                  |
| Submit raw materials to shop for<br>production - (subject to change due to | Mon 1/26/15 | Thu 1/29/15 |                                                                                  |
| Machining and production of mechanism                                      | Fri 1/30/15 | Fri 2/13/15 |                                                                                  |
| Assembly of mechanism                                                      | Mon 2/16/15 | Wed 2/18/15 |                                                                                  |
| ▲ User Interface                                                           | Mon 1/5/15  | Tue 3/31/15 | *                                                                                |
| Develop user interface                                                     | Mon 1/5/15  | Tue 3/31/15 |                                                                                  |
| Integrate user interface with mechanism                                    | Wed 2/18/15 | Tue 3/31/15 |                                                                                  |
| ▲ Testing                                                                  | Wed 2/25/15 | Tue 3/31/15 | • • • • • • • • • • • • • • • • • • •                                            |
| Verify cyclic loading                                                      | Wed 2/25/15 | Tue 3/31/15 |                                                                                  |
| Verify variable frequency                                                  | Wed 2/25/15 | Tue 3/31/15 |                                                                                  |
| A Redesign (if needed)                                                     | Tue 3/3/15  | Fri 4/10/15 | <b>₽</b> ₩                                                                       |
| Redesign part drawings                                                     | Wed 3/4/15  | Wed 3/11/15 |                                                                                  |
| Order materials                                                            | Wed 3/11/15 | Fri 3/13/15 |                                                                                  |
| Machining and production of redesigned                                     | Mon 3/16/15 | Fri 3/20/15 |                                                                                  |
| Reassemble new mechanism                                                   | Mon 3/23/15 | Fri 3/27/15 |                                                                                  |
| Implement and test redesigned mechanis                                     | Mon 3/30/15 | Fri 4/10/15 |                                                                                  |

Group Number 20 Slide 12 of 16

## **Budget & Procurement**





Figure 10. Pie Chart of Budget Allocation

\$ Motor & Controller 470.00 \$ Materials 300.00 **Power Supply** \$ 135.00 \$ LVDT 575.00 Remaining Budget \$ 520.00 \$2,000.00 Total

Purchase of new controller: Roboclaw 2x30A

• \$124 (6.2%)

Group Number 20 Slide 13 of 16

### Summary

**Need Statement:** There is a lack of information on the fatigue of electroactive membranes.

**Goal Statement:** Design and build a device that produces high cycle sinusoidal mechanical fatigue of electroactive membranes.

- Vary frequency 0 to 25 Hz
- Vary stroke 2.5mm, 5mm, 7.5mm

Mechanism Design: Crank Slider

Latest Achieved Milestone: Assembly of second prototype

**Key Next Step:** Connect LVDT (record data) and integration of motor controller

### References

[1] Oates, William and Jonathan Clark. "High Cycle Fatigue of Electroactive Membranes." Florida A&M/Florida State University, 2014. Print.

[2] Newton, Jason. "Design And Characterization Of A Dielectric Elastomer Based Variable Stiffness Mechanism For Implementation Onto A Dynamic Running Robot." Thesis. Florida State University - College Of Engineering, 2014. Print

[3] http://www.mcmaster.com/#59835k63/=vjpspd

- [4] https://www.pololu.com/product/2393
- [5] http://www.omega.com/Pressure/pdf/LD630.pdf

# Questions?

For more information visit our website: www.eng.fsu.edu/me/senior\_design/2015/team20/

Group Number 20 Slide 16 of 16

Project Update

## **Updated Motor Requirements**

#### **Most Extreme Conditions**

Displacement, **x = 7.5mm** Radius, r = 3.75mm Frequency, f = 25 Hz Mass, **m ~ 0.5 kg** 

Acceleration:  $\ddot{x} = x_o \omega^2 \sin(\omega t)$ 

Total Force:  $F = m * a = m * \ddot{x}$ 

Max. Allowable Force (F.S. of 2) = 185N

 $\frac{\text{Minimum Required Torque}}{\text{Torque} = F_{max} \cdot r = 185N \cdot 3.75mm}$   $\frac{\text{Torque} = 0.7 N \cdot m}{\text{Torque} = 0.7 N \cdot m}$ 

Minimum Required Angular Velocity

$$\omega = 2\pi \cdot f = 2\pi \cdot 25Hz \cdot \frac{60s}{1\min} \cdot \frac{1rev}{2\pi}$$
$$\omega = 1500 rpm$$

## **Key Mechanical Changes**

Linkage Update



Figure 6. (a)Original linkage & (b) redesigned linkage.

**Coupler Update** (a) 1.89" (b)

Figure 7. (a)Original coupler & (b) redesigned coupler.

Group Number 20 Slide 8 of 17 Victor Odewale Project Update



displacement transmitters have improved IP67-rated sealing, coupled with polymer guides with rigid carriers. These transmitters are accurate and reliable, especially in wet and corrosive conditions. Output options are either directacting 4 to 20 mA or reverse-acting 20 to 4 mA. The direct-acting model will have 4 mA output when the guided core is fully out, and the output will increase to 20 mA when fully in.

#### SPECIFICATIONS Linearity: <0.2% FSO

Linearity: 40.2% FSO Excitation Voltage: 10 to 30 Vdc Output: 4 to 20 mA Output Ripple: 0.02% FSO Bandwidth: 500 Hz (-3 dB) Storage Temp: -20 to 85°C (-4 to 185°F) Operating Temp: 0 to 65°C (32 to 149°F) Vibration (Sinusoidal Frequency): 10 to 50 Hz: 1 to 10 g ms linear amplitude 50 Hz to 1 kHz: 10 g ms amplitude Shock: Drop Testing: 1 m (3') onto hard surface Topple Testing: 10 times each end onto hard surface Cable: PFA, 2 m (6) long Core Material: Nickel-iron

| To Order Visit omega.com/ld630 for Pricing and Details |                      |                      |                      |
|--------------------------------------------------------|----------------------|----------------------|----------------------|
| MODEL NO.                                              | RANGE:<br>mm (inch)  | "A" DIM<br>mm (inch) | "B" DIM<br>mm (inch) |
| LD630-5                                                | 0 to 5 (0 to 0.2)    | 94.0 (3.7)           | 35.3 (1.4)           |
| LD630-10                                               | 0 to 10 (0 to 0.4)   | 113.5 (4.5)          | 46.3 (1.8)           |
| LD630-15                                               | 0 to 15 (0 to 0.6)   | 120.7 (4.8)          | 50.3 (2.0)           |
| LD630-20                                               | 0 to 20 (0 to 0.8)   | 135.0 (5.3)          | 61.3 (2.4)           |
| LD630-30                                               | 0 to 30 (0 to 1.2)   | 149.4 (5.9)          | 79.3 (3.1)           |
| LD630-50                                               | 0 to 50 (0 to 2.0)   | 170.9 (6.7)          | 102.3 (4.0)          |
| LD630-100                                              | 0 to 100 (0 to 3.9)  | 228.5 (9.0)          | 160.3 (6.3)          |
| LD630-150                                              | 0 to 150 (0 to 5.9)  | 278.7 (11.0)         | 231.3 (9.1)          |
| LD630-200                                              | 0 to 200 (0 to 7.9)  | 336.2 (13.2)         | 291.2 (11.5)         |
| LD630-300                                              | 0 to 300 (0 to 11.8) | 450.9 (17.8)         | 457.3 (18.0)         |

(0.75 0.71)

0

Misci.06g Milthread

To order reverse-acting version (20 to 4 mA), add suffix "-R" to model number, no additional charge.

"A" body length ±0.5 (x0.02)

Ordering Example: LD630-10-R, 0 to 10 mm (0 to 0.4") displacement transmitter with reverse 20 to 4 mA output.

#### ACCESSORIES MODEL NO.

| MODEL NO.     | DESCRIPTION           |
|---------------|-----------------------|
| LD-TIP        | Tip adaptor/ball tip  |
| LD-UJOINT-KIT | U-joint retro fit kit |



DATA SHEET

#### TECHNICAL DATA:

#### Input

| PARAMETER                     | DESCRIPTION/CONDITION              |                 |
|-------------------------------|------------------------------------|-----------------|
| input voltage range           | Universal Input                    | 90 - 264 Vec    |
|                               |                                    | 120 - 390 Vdc   |
| Input frequency range         | 47-03 Hz                           |                 |
| Input surge current           | 230 Vec (cold start)               | 65 A mex.       |
| Safety ground leakage current | 230 Vec                            | 300 µA max      |
| Input current                 | 120 Vec @ 200 W<br>230 Vec @ 200 W | 3.2 A<br>1.05 A |

#### Output

| PARAMETER                   | DESCRIPTION/CONDITION                                                              |                                 |
|-----------------------------|------------------------------------------------------------------------------------|---------------------------------|
| Voltege Adjustment          | V1                                                                                 | ± 3%                            |
| Transient Response          | Main output 50 to 100% load change, 50 Hz, 50% duty cycle, 0.1 A / uSec, 50/00 Hz. | < 10%, recovery time $<$ 5 mSec |
| Over Voltage Protection     | V1                                                                                 | 110 to 150% rated max           |
| Over Current Protection     | Rated output current                                                               | 110 to 150% Typical             |
| Short Circuit Protection    | Automatic recovery                                                                 |                                 |
| Over Temperature Protection | Automatic recovery                                                                 | 110° C primery heatsink.        |
| Set point tolerence         | ± 1%                                                                               |                                 |
| Rise Time                   | <100 mSec                                                                          |                                 |

#### Ordering Information

| PRODUCT FAMILY     | VOLTS<br>(VDC) | MAX LOAD<br>CONVECTION (2) | MAX LOAD<br>300 LFM (2) | MINIMUM<br>LOAD (A) | RIPPLE & NOISE (4) | CONNECTOR      | TOTAL<br>REGULATION |
|--------------------|----------------|----------------------------|-------------------------|---------------------|--------------------|----------------|---------------------|
| ABC300-1T05G       | 5              | 28.0 A                     | 40.0 A                  | D                   | 2%                 | Screu Terminal | ± 2.5%              |
| ABC300-1T12G       | 12             | 15.0 A                     | 25.0 A                  | 0                   | 2%                 | Screu Terminal | ± 2.5%              |
| ABC300-1T15G       | 15             | 12.0 A                     | 20.0 A                  | D                   | 2%                 | Screu Terminal | ± 2.5%              |
| ABC300-1T24G       | 24             | 7.5 A                      | 13.54 A                 | D                   | 2%                 | Screu Terminal | ± 2.5%              |
| ABC300-1T30G       | 30             | 6.0                        | 10.83 A                 | D                   | 2%                 | Screu Terminal | ± 2.5%              |
| ABC300-1T483       | 43             | 3.75 A                     | 6.77 A                  | 0                   | 2%                 | Screu Terminal | ± 2.5%              |
| Vfan (all models)  | 12             | 0.5 A                      | 0.6 A                   | 0                   |                    |                | ± 20%               |
| V s/b (all models) | 6              | 2.0 A                      | 2.0 A                   | 0                   |                    |                | ± 5%                |

#### Notes:

- 1. Peak current rating of 120% of max, < 30 Sec with max of 10% duty cycle.
- Combined power from main output; Vfan and Valb should not exceed total power reting.
  Fan output tolerance is ± 20%. When V1 full load, Vfan needs 20 mA load to be within regulation specification. Peak ourrent for fan output is 1 A.
- Ripple is 2% up to 20% load and less than 1% above 20% load. Output noise measurement is made with a 20 MHz bandwidth using a 6<sup>o</sup> twisted pair, terminated with a 10 uF tantalum capacitor in penallel with a 0.1 uF ceramic capacitor.
- 5. Specifications are for nominal input voltage, 25°C and max load unless otherwise stated.

#### POWER-ORE

- Class 1 models have Earthing tab J4. Class 2 models (-2 suffix) have no Earthing tab.
  Densite power linearly to 80% from 90 Vac to 80 Vac input.
- 8. Power supply shipped with J3 pin 1 and 2 shorted to enable main output
- 9. Specifications subject to change without notice.
- Air flow over long edge (either direction) required for eir flow reting. See mechanical drawing below.
  Warranty 2 years.

#### General Specifications

| PARAMETER           | DESCRIPTION/CONDITION        |                                                               |  |
|---------------------|------------------------------|---------------------------------------------------------------|--|
| Hold Lin Time       | 120 Vec                      | 10 mBec                                                       |  |
| hold op time        | 230 Vec                      | 10 mBec                                                       |  |
| NTBF                | >250 khrs                    | Belcore TR-332                                                |  |
| Switching Frequency | PFC converter 30 kHz typical | Resonant converter: Variable 35 to 250<br>kHz, 90 kHz typical |  |
| Isolation Voltage   | Min 5000 Vdc                 | Input to Output                                               |  |
| Weight              | 450 g (0.99 lbs)             |                                                               |  |

#### Environmental

| PARAMETER                      | DESCRIPTIONICONDITION        |                                |
|--------------------------------|------------------------------|--------------------------------|
| Operating Temperature          | -20 to 70 C                  | See detaing charts below       |
| Attude                         | Operating 10,000 ft.         | Non-operation 40,000 ft.       |
| Conducted emissions:           | ENSS022, FCC pert 15 Level B |                                |
| Redieted Emissions             | ENS5022, FCC pert 15 Level B | To be controlled in end system |
| Electromagnetic Susceptibility | EN61000-4 3                  | 2, 3, 4, 5 level 3             |
| Hermonic Current               | EN61000-3-2, Class D         |                                |

#### Signals

| PARAMETER    | DESCRIPTION/CONDITION                                                                |
|--------------|--------------------------------------------------------------------------------------|
| Power Good   | TTL signal goes high after main output is within regulation, delay is 0.1 to 0.3 sec |
| Inhibit      | To turn on power supply short J3 pin 1 to J3 pin 2 or J3 pin 7                       |
| Remote Bense | Compensates for 200 mV drop                                                          |

#### Safety

| PARAMETER | DESCRIPTIONICONDITION                                                                       |
|-----------|---------------------------------------------------------------------------------------------|
| EN/UL/CSA | EN60950-1+A12:2011, IEC60950-1 2**+A1 2009, CBA-22.2 No 60950-01-07+ A1, UL60950-<br>1-2011 |

DATA SHEET

### Selected Design - Crank Slider Mechanism



Group Number 20 Slide 6 of 17 Victor Odewale Project Update

