High Cycle Fatigue of Electroactive Membranes

Aeropropulsion Mechatronics & **Team 20:**

Nicholas Dawkins Matthew Drys Kristina Dukes Adriane Guettler Victor Odewale

Advisor: Dr. Oates Sponsors: Dr. Clark and Dr. Oates Instructors: Dr. Gupta and Dr. Helzer

Project Scope

Need Statement: There is a lack of information on the fatigue of electroactive membranes.

- Electroactive membranes are being studied for application onto robots.
- There is insufficient data on the fatigue behavior for electroactive membranes [1]
- The purpose of this project is the design and implementation of a fatigue mechanism for electroactive membranes

Oates, William and Jonathan Clark. "High Cycle Fatigue of Electroactive Membranes." Florida A&M/Florida State University, 2014. Print.
 Newton, Jason. "Design And Characterization Of A Dielectric Elastomer Based Variable Stiffness Mechanism For Implementation Onto A Dynamic Running Robot." Thesis. Florida State University - College Of Engineering, 2014. Print

Figure 1. iSprawl Robot with VHB membrane stack[2]

Group Number 20 Slide 2 of 17

Project Scope

Goal Statement: Design and build a device that produces high cycle sinusoidal mechanical fatigue of electroactive membranes.

Objectives:

- Accurately measure the fatigue placed on the specimen
- Produce various frequencies of cycling
- Produce varying stroke distances to displace the membrane
- Allow for tracking of the displacements controlled by the fatigue machine
- Measure the load associated with the stroke by implementing with the MTS machine

Group Number 20 Slide 3 of 17

Project Scope

Constraints

- System should be a tabletop mechanism that is mounted to the MTS machine
- Vary stroke from 0 to 10mm
- Vary frequency from 0 to 25 Hz
- Produce consistent functionality for various specimens
- Test 1 to 5 specimens at a time
- Complete within the budget

Figure 2. MTS machine

Figure 3. VHB membrane specimen

Dynamic Force Analysis

Most Extreme Conditions

Displacement x = 10mmFrequency f = 25 Hz

Displacement: $x = x_o \sin(\omega t)$

Acceleration: $\ddot{x} = x_o \omega^2 \sin(\omega t)$

Total Force: $F = m * a = m * \ddot{x}$

Factor of Safety = 2 Max. Allowable Force = 500N

Design - Platform

Platform to secure and test up to 5
 specimens

Figure 4 (a) Platform rendering

Group Number 20 Slide 6 of 17

Designs

Three designs selected for concept of operation

Slide 7 of 17

Design Selection

Decision Matrix

- Ranking Scale
 - 1-poor, 3-adequate, 5-best

Team 20 Design Decision Matrix										
					Performance					
			Ease		(vary stroke					
Design	Safety	Low Cost	of Use	Reliability	& frequency)	Total				
	0.20	0.05	0.10	0.20	0.45					
Solenoid	5	5	5	3	3	3.7				
Crank Slider	3	3	3	5	5	4.3				
Cam	3	3	1	5	5	4.1				

Modeling and Analysis

Stroke Throughout Cycle **Displacement (mm)** 12 Displacement (mm) 10 8 6 4 2 0 100 200 300 0 400

Degrees (deg)

Group Number 20 Slide 9 of 17

Modeling and Analysis

Figure 8 (a) Linkage and pins (b) FBD of pin.

Group Number 20 Slide 10 of 17

$$\tau = \frac{V}{A_c} = \frac{V}{\pi r^2}$$
$$\tau = 70.7 MPa$$

Possible Pin Material: Stainless Steel $\sigma_y = 170 - 1000 MPa$

Modeling and Analysis

Motor Calculations

Most Extreme Conditions

Displacement x = 10mmradius = 5mm Frequency f = 25 HzMax. Allowable Force = 500N Minimum Required Torque

$$Torque = F_{max} \cdot r = 500N \cdot 5mm$$
$$Torque = 2.50N \cdot m$$

Kristina Dukes Midterm 2

Group Number 20 Slide 11 of 17

Potential Challenges & Solutions

- Development of user interface
 - LabView
- Time syncing data from mechanism to MTS data
 - DAQ system
- Being a usable system on or off the MTS
 - Design base to accommodate
- Securing and testing multiple membranes
 - Variable mounting clamp

Schedule

Task Name			8	October				November				Decembe	er	
	Start -	 Finish 	•	9/28	10/5	10/12	10/19	10/26	11/2	11/9	11/16	11/23	11/30	12/7
Analysis of Machine	Mon 11/3/14	Fri 12/5/14	4						÷				4	
Force Analysis using CAD Assembly	Mon 11/3/14	Fri 11/7/14	1											
Fatigue Analysis using CAD Assembly	Mon 11/3/14	Fri 11/7/14	4											
Frequency to Velocity Analysis	Mon 11/3/14	Fri 11/14/:	14											
Material Selection	Mon 11/17/14	Fri 11/28/:	14								1		n	
Outsorcing of Motor and Power Source	Mon 11/17/14	Fri 11/28/:	14								1	-		
Analysis of Cost Feasibility	Mon 12/1/14	Fri 12/5/14	1										•	
 Developing a User Interface 	Wed 10/1/14	Fri 12/5/14	4	+									*	
Sycronize with Lab View	Wed 10/1/14	Fri 12/5/14	1											
GUI	Wed 10/1/14	Fri 12/5/14	4										H	

Kristina Dukes Midterm 2

Future Work

- Finalize CAD drawings and renderings
 - Housing
 - Guide rails
 - Mounting mechanism
 - Motor coupling
 - Slotted disk
- Select materials for mechanism
- Complete a cost analysis on the system
- Purchase motor and controller
- Design a working user interface

Summary

Need Statement: There is a lack of information on the fatigue of electroactive membranes.

Goal Statement: Design and build a device that produces high cycle sinusoidal mechanical fatigue of electroactive membranes.

- Vary frequency
- Vary stroke

Final Design Selected: Crank Slider mechanism **Key Next Step:** Finalize design components

References

[1] Oates, William and Jonathan Clark. "High Cycle Fatigue of Electroactive Membranes." Florida A&M/Florida State University, 2014. Print.

[2] Newton, Jason. "Design And Characterization Of A Dielectric Elastomer Based Variable Stiffness Mechanism For Implementation Onto A Dynamic Running Robot." Thesis. Florida State University - College Of Engineering, 2014. Print

Questions?

For more information visit our website: www.eng.fsu.edu/me/senior_design/2015/team20/

Group Number 20 Slide 17 of 17

Midterm 2