High Cycle Fatigue of Electroactive Membranes

Aeropropulsion Mechatronics & **Team 20:**

Nicholas Dawkins Matthew Drys Kristina Dukes Adriane Guettler Victor Odewale

Advisor: Dr. Oates Sponsors: Dr. Clark and Dr. Oates Instructors: Dr. Gupta and Dr. Helzer

Project Scope

Need Statement: There is a lack of information on the fatigue of electroactive membranes.

- Electroactive membranes are being studied for application onto robots.
- There is insufficient data on the fatigue behavior for electroactive membranes [1]
- The purpose of this project is the design and implementation of a fatigue mechanism for electroactive membranes

Figure 1. iSprawl Robot with VHB membrane stack[2]

Project Scope

Goal Statement: Design and build a device that produces high cycle sinusoidal mechanical fatigue of electroactive membranes.

Objectives:

- Accurately measure the fatigue placed on the specimen
- Produce various frequencies of cycling
- Produce varying stroke distances to displace the membrane
- Allow for tracking of the displacements controlled by the fatigue machine
- Measure the load associated with the stroke by implementing with the MTS machine

Group Number 20 Slide 3 of 13

Project Scope

Constraints

- System should be a tabletop mechanism that is mounted to the MTS machine
- Vary stroke from 0 to 10mm
- Vary frequency from 0 to 100 Hz
- Produce consistent functionality for various specimens
- Test 1 to 5 specimens at a time
- Complete within the budget

Figure 2. MTS machine

Figure 3. VHB membrane specimen

Designs

Decision Matrix

Team 20 Design Decision Matrix								
Design	Safety	Low Cost	Easily Assembled	Mobility (size & weight)	Maintenance	Performance (vary stroke & frequency)	Total	
	0.20	0.10	0.05	0.05	0.20	0.40		
Solenoid	7	6	8	5	4	8	6.65	
Four Bar	5	5	7	6	8	5	5.75	
Cam	6	5	8	6	7	7	6.6	
Scotch Yoke	8	5	8	5	8	6	6.75	
Pneumatic	7	2	6	4	7	6	5.9	

Designs

Two possible designs chosen

Figure 4. Scotch Yoke Design

Figure 5. Solenoid Design

Group Number 20 Slide 6 of 13

Modeling and Analysis

Scotch Yoke Design

- Forces acting on pin
- Friction between pin and slot
- Angular velocity based on pin location
- Failure analysis
- Preliminary cost of motors

Solenoid Design

- Forces acting on solenoid
- Friction between guide and housing
- Failure Analysis
- Preliminary cost of solenoids

Potential Challenges & Solutions

- Development of user interface
 - LabView
- Time syncing data from mechanism to MTS data
 - DAQ system
- Being a usable system on or off the MTS
 - Design base to accommodate
- Securing and testing multiple membranes
 - Variable mounting clamp

Figure 7. Multiple VHB frames [2]

Group Number 20 Slide 8 of 13 Victor Odewale Midterm 1

Future Work

- Further research on two chosen designs
- Narrow design down to one system to begin building
- Finalize CAD drawings and renderings
- Force, friction and fatigue analysis on system
- Begin researching materials for system
- Research types of motors to be outsourced
- Complete a cost analysis on the system
- Design a working user interface

Schedule

Design of Machine	Thu 9/25/14	Fri 10/31/14	
Designs by all team members	Thu 9/25/14	Tue 9/30/14	
Designs Due	Wed 10/1/14	Wed 10/1/14	
Decision Matrix	Wed 10/1/14	Mon 10/6/14	
Measure Dimensional Constraints	Fri 9/26/14	Fri 9/26/14	
CAD Drawings	Tue 10/7/14	Fri 10/31/14	
Analysis of Machine	Mon 11/3/14	Fri 12/5/14	
Force Analysis using CAD Assembly	Mon 11/3/14	Fri 11/7/14	
Fatigue Analysis using CAD Assembly	Mon 11/3/14	Fri 11/7/14	
Frequency to Velocity Analysis	Mon 11/3/14	Fri 11/14/14	
Material Selection	Mon 11/17/14	Fri 11/28/14	
Outsorcing of Motor and Power Source	Mon 11/17/14	Fri 11/28/14	
Analysis of Cost Feasibility	Mon 12/1/14	Fri 12/5/14	
Developing a User Interface	Wed 10/1/14	Fri 12/5/14	
Sycronize with Lab View	Wed 10/1/14	Fri 12/5/14	
GUI	Wed 10/1/14	Fri 12/5/14	

Group Number 20 Slide 10 of 13

Victor Odewale Midterm 1

Summary

Need Statement: There is a lack of information on the fatigue of electroactive membranes.

Goal Statement: Design and build a device that produces high cycle sinusoidal mechanical fatigue of electroactive membranes.

- Vary frequency
- Vary stroke

Key Next Step: Finalize design selection.

References

[1] Oates, William and Jonathan Clark. "High Cycle Fatigue of Electroactive Membranes." Florida A&M/Florida State University, 2014. Print.

[2] Newton, Jason. "Design And Characterization Of A Dielectric Elastomer Based Variable Stiffness Mechanism For Implementation Onto A Dynamic Running Robot." Thesis. Florida State University - College Of Engineering, 2014. Print

Questions?

Group Number 20 Slide 13 of 13

Midterm 1