High Cycle Fatigue of Electroactive Membranes

Project Update

January 20, 2015

AVIE Aeropropulsion Mechatronics & Energy Center Team 20: Nicholas Dawkins Matthew Drys Kristina Dukes Adriane Guettler Victor Odewale

Advisor: Dr. Oates Sponsors: Dr. Clark and Dr. Oates Instructor: Dr. Gupta

Project Scope

Need Statement: There is a lack of information on the fatigue of electroactive membranes.

- Electroactive membranes are being studied for application onto robots.
- There is insufficient data on the fatigue behavior for electroactive membranes [1]
- The purpose of this project is the design and implementation of a fatigue mechanism for electroactive membranes

Oates, William and Jonathan Clark. "High Cycle Fatigue of Electroactive Membranes." Florida A&M/Florida State University, 2014. Print.
Newton, Jason. "Design And Characterization Of A Dielectric Elastomer Based Variable Stiffness Mechanism For Implementation Onto A Dynamic Running Robot." Thesis. Florida State University - College Of Engineering, 2014. Print

Figure 1. iSprawl Robot with VHB membrane stack[2]

Group Number 20 Slide 2 of 15

Project Scope

Goal Statement: Design and build a device that produces high cycle sinusoidal mechanical fatigue of electroactive membranes.

Objectives:

- Accurately measure the fatigue placed on the specimen
- Produce various frequencies of cycling
- Produce varying stroke distances to displace the membrane
- Allow for tracking of the displacements controlled by the fatigue machine
- Measure the load associated with the stroke by implementing with the MTS machine

Group Number 20 Slide 3 of 15

Project Scope

Updated Constraints

- System should be a tabletop mechanism that is mounted to the MTS machine
- Vary stroke 2.5mm, 5mm, 7.5mm
- Vary frequency from 0 to 25 Hz
- Implement LVDT (Linear Variable Differential Transducer)
- Produce consistent functionality for various specimens
- Test 1 to 5 specimens at a time
- Complete within the budget

Figure 2. MTS machine

Figure 3. VHB membrane specimen

Nicholas Dawkins Project Update

Group Number 20 Slide 4 of 15

Selected Design - Crank Slider Mechanism

Group Number 20 Slide 5 of 15

Approach to Assembly - Mechanical

Challenge: Easily change coupler to vary stroke distance

Spring Pins

- OD 3mm
- Length 26mm

Ball Bearings

- OD 6mm
- ID 3mm

Figure 4. (a)Spring pin and (b)bearing. [3]

Figure 5. (a)Linkage and (b)coupler.

Group Number 20 Slide 6 of 15

[3] www.mcmaster.com

Approach to Assembly - Electrical

Group Number 20 Slide 7 of 15

Prototyping

ABS Prototype

- Showed proof of concept
- Successful sinusoidal motion

Challenges

- Friction
- Alignment
- Vibration

Figure 6. ABS Prototype

Group Number 20 Slide 8 of 15

Updated Motor Requirements

Most Extreme Conditions

Displacement, **x = 7.5mm** Radius, r = 3.75mm Frequency, f = 25 Hz Mass, **m ~ 0.5 kg**

Acceleration: $\ddot{x} = x_o \omega^2 \sin(\omega t)$

Total Force: $F = m * a = m * \ddot{x}$

Max. Allowable Force (F.S. of 2) = 185N

 $\frac{\text{Minimum Required Torque}}{\text{Torque} = F_{max} \cdot r = 185N \cdot 3.75mm}$ $\frac{\text{Torque} = 0.7 N \cdot m}{\text{Torque} = 0.7 N \cdot m}$

Minimum Required Angular Velocity

$$\omega = 2\pi \cdot f = 2\pi \cdot 25Hz \cdot \frac{60s}{1\min} \cdot \frac{1rev}{2\pi}$$
$$\omega = 1500 rpm$$

Selected Motor & Controller

Figure 7. Compact DC Motor [3]

Figure 8. Motor Controller[4]

Compact Face Mount DC Motor

- 24V
- 13A
- 3500 rpm @ 0.72 Nm

RoboClaw Motor Controller

- USB or serial
- 2 channel
- 30A

[3] http://www.mcmaster.com/#59835k63/=vjpspd[4] https://www.pololu.com/product/2393

Group Number 20 Slide 10 of 15

Schedule

Task Name_ 🗸 Start 🗸	Finish 👻 F	n 4, '15 Jan 1 T + S + W S	8, '15 Feb 1, '15 Feb 15, '15 Mar 1, '15 Mar 15, '15 Mar 29, '15 T + M + F + T + S + W S + T + M + F + T + S + W S + T + M + F + T + S + V
			Jan 4, '15 Jan 18, '15 Feb 1, '15 Feb 15, '15
Task Name 👻	Start 👻	Finish 🚽	F T S W S T M F T S W S T M
4 Material Procurement	Mon 1/5/15	Fri 1/23/15	←
Finalize materials list	Mon 1/5/15	Wed 1/14/15	
Order materials and components	Wed 1/14/15	Fri 1/23/15	
Production of Mechanism	Mon 1/12/15	Wed 2/18/15	+
Finalize all part drawings	Mon 1/12/15	Tue 1/20/15	
Submit drawings to machine shop	Wed 1/21/15	Tue 1/27/15	
Submit raw materials to shop for production - (subject to change due to	Mon 1/26/15	Thu 1/29/15	
Machining and production of mechanisr	Fri 1/30/15	Fri 2/13/15	
Assembly of mechanism	Mon 2/16/15	Wed 2/18/15	
4 User Interface	Mon 1/5/15	Fri 2/27/15	+
Develop user interface	Mon 1/5/15	Fri 2/27/15	
Integrate user interface with mechanism	Wed 2/18/15	Fri 2/27/15	
	11 3/2//13		
Implement and test redesigned mechani: Mon 3/30/15	Fri 4/10/15		

Group Number 20 Slide 11 of 15

Budget & Procurement

Budget: approx. \$2000

Purchasing Estimates:

- Raw Materials ~10%
- Motor & Controller ~20%
- Hardware ~30%
 - Power supply
 - LVDT
 - Encoder

Figure 9. Pie Chart of Budget Allocation

Group Number 20 Slide 13 of 15

Summary

Need Statement: There is a lack of information on the fatigue of electroactive membranes.

Goal Statement: Design and build a device that produces high cycle sinusoidal mechanical fatigue of electroactive membranes.

- Vary frequency 0 to 25 Hz
- Vary stroke 2.5mm, 5mm, 7.5mm

Mechanism Design: Crank Slider

Latest Achieved Milestone: Purchased motor and raw materials.

Key Next Step: Submit raw materials and drawings for machining. Purchase LVDT, power supply, and encoder.

References

[1] Oates, William and Jonathan Clark. "High Cycle Fatigue of Electroactive Membranes." Florida A&M/Florida State University, 2014. Print.

[2] Newton, Jason. "Design And Characterization Of A Dielectric Elastomer Based Variable Stiffness Mechanism For Implementation Onto A Dynamic Running Robot." Thesis. Florida State University - College Of Engineering, 2014. Print

[3] http://www.mcmaster.com/#59835k63/=vjpspd

[4] https://www.pololu.com/product/2393

Questions?

For more information visit our website: www.eng.fsu.edu/me/senior_design/2015/team20/

Group Number 20 Slide 15 of 15

Project Update