MIDTERM 1 SPRING THERMAL STORAGE

JHAMAL HOLLIDAY

BELAL NABULSI

CORY NELSON

BRUCE OROZCO

VERDICORP

ORGANIC RANKINE CYCLE POWER SYSTEMS

- BUILDS MODULAR VAPOR POWER CYCLES
- Runs from waste or low temperature heat sources
- Uses environmentally friendly fluids (R245a)

Figure 1. Image of Verdicorp ORC System

Group 17 Bruce Orozco Slide 2 of 30

NEED

DEPENDING ON WASTE OR RENEWABLE HEAT SOURCES CAUSES:

- UNRELIABLE POWER OUTPUT
- LIMITS RUNNING TIME TO THAT OF THE FUEL SOURCE
- DECREASES SYSTEM EFFICIENCY

SOLVE BY INCLUSION OF THERMAL ENERGY STORAGE

GOAL: TO PRODUCE A COMMERCIALLY VIABLE THERMAL STORAGE SOLUTION FOR VERDICORP'S RANKINE CYCLE UTILIZING ENVIRONMENTALLY FRIENDLY MATERIALS.

Group 17 Bruce Orozco Slide 4 of 30

SYSTEM OVERVIEW

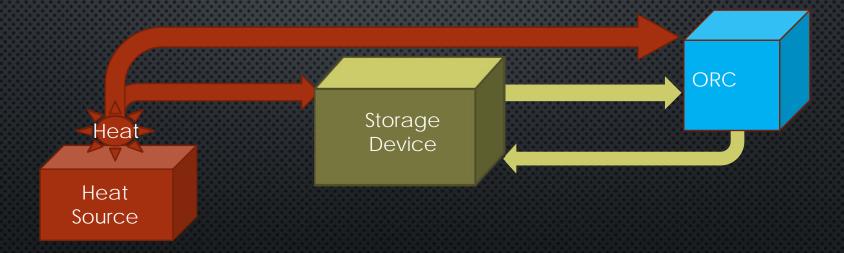


Figure 2. Overall System Diagram

Group 17 Bruce Orozco Slide 5 of 30

THERMAL ENERGY STORAGE

STORAGE OF ENERGY FOR LATER USE:

- STABILIZES THE SYSTEM OUTPUT
- EXTENDS THE OPERATION TIME
- Responds to demand
- INCREASES EFFICIENCY; THUS DECREASING COST
- FORMS OF STORAGE: SENSIBLE OR LATENT

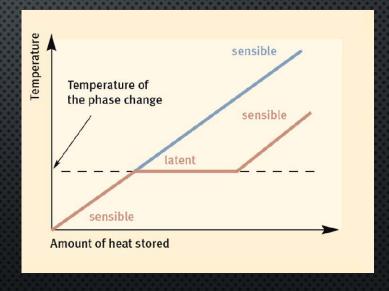


Figure 2. Heat Storage Forms

Group 17 Bruce Orozco Slide 6 of 30

LATENT HEAT STORAGE

- BASED ON SHELL-AND-TUBE HEAT EXCHANGER
- TRANSFER FLUID TRANSFER HEAT TO/FROM PHASE CHANGE MATERIALS
- Full size: 37.8GJ Model: 19.8kJ
- SCALE: 1/1900TH
- CAPSULE SCALE: 1/20TH

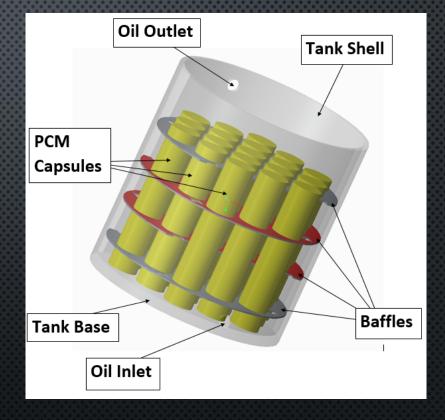
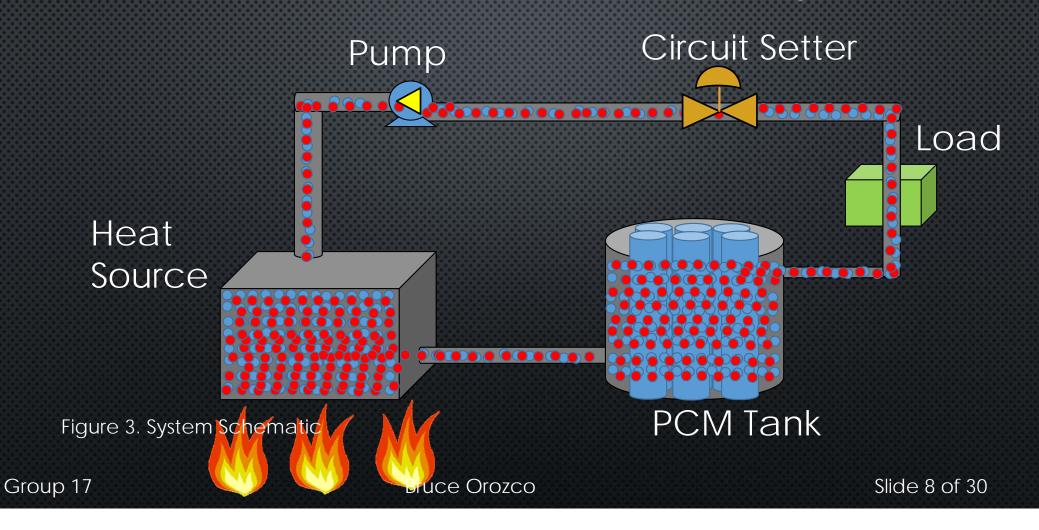



Figure 4. Model of Latent Heat Storage Device

SYSTEM SCHEMATIC OF TESTING EQUIPMENT

CHARGE TIME

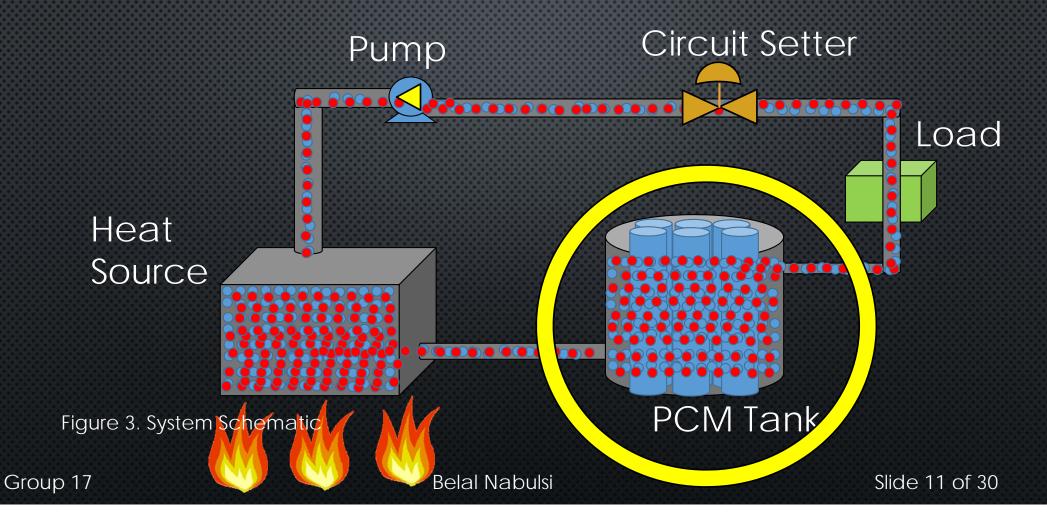
ASSUMPTIONS:

- THERMOPHYSICAL PROPERTIES ARE INDEPENDENT OF TEMPERATURE.
- THE PCM IS HOMOGENEOUS AND ISENTROPIC AS BOTH LIQUID AND SOLID
- PCM TEMPERATURE IS UNIFORM ACROSS SHELL AREA
- PERFECTLY INSULATED

METHOD:

- 1. AVERAGE FLUID VELOCITY
- 2. EFFECTIVE FLOW AREA
- 3. Average Mass Flow
- 4. USE LMTD AND MASS FRACTION RELATION

 $\Delta T \cong 30 \ mins$


HEAT LOSS

- FIND OVERALL CONVECTIVE HEAT TRANSFER COEFFICIENT FOR ENTIRE SHELL
- FIND THE TOTAL RESISTANCE OF THE SYSTEM.
- Use One Dimensional to Find Heat Flux out of shell
- DIVIDE THE TOTAL ENERGY OF THE SYSTEM BY THE HEAT LOSS

 $\dot{Q}_{loss} \cong 210 W$

 $time \cong 7 hrs$

SYSTEM SCHEMATIC OF TESTING EQUIPMENT

FLUID FLOW: SINGLE SEGMENTAL

- FLUID FLOW IS DICTATED BY BAFFLES
- BAFFLE CUTS ARE 30% OF TANK INSIDE DIAMETER
- SPACING IS 1/5 THE TANK INSIDE DIAMETER
 - 3.05 IN APART
- TUBE PITCH IS THE CENTER-TO-CENTER
 DISTANCE OF EACH TUBE
 - 1.25 TIMES OUTSIDE DIAMETER OF TUBE

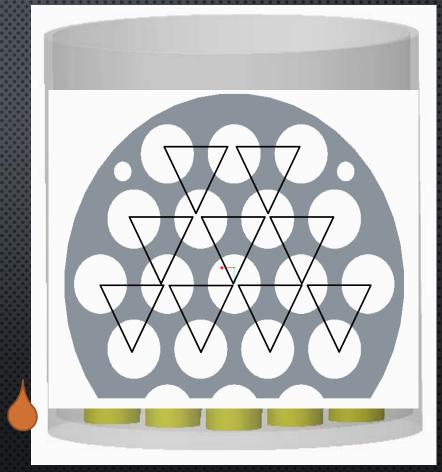
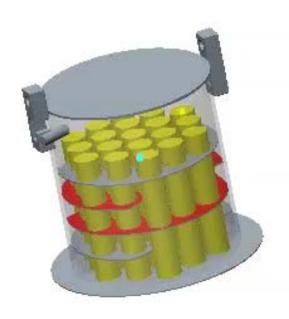



Figure 5. Animation of Fluid Flow in Shell

Group 17 Belal Nabulsi Slide 12 of 30

SINGLE SEGMENTAL CONFIGURATION

FLUID FLOW: DISK AND DOUGHNUT

- Annular area between disk and shell is same as area of ring
- SPACING IS 1/5 THE TANK INSIDE DIAMETER
 - 3.05 IN APART
- TUBE PITCH IS THE CENTER-TO-CENTER
 DISTANCE OF EACH TUBE
 - 1.25 TIMES OUTSIDE DIAMETER OF TUBE

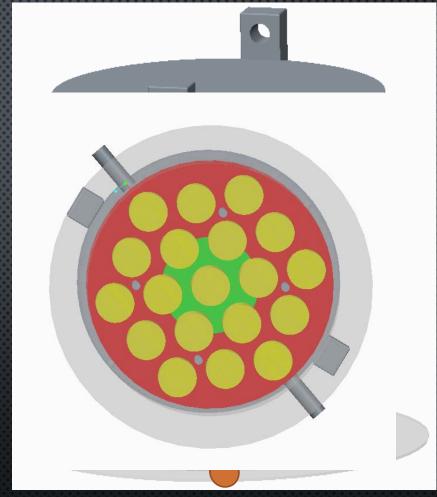
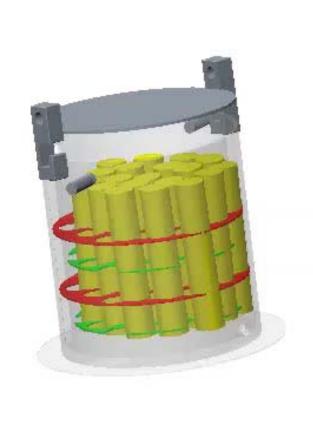



Figure 6. Animation of Fluid Flow in Shell

DISK AND DOUGHNUT CONFIGURATION

TWIST-ON LID DESIGN

- LATCH DESIGN ALLOWS FOR EASY REMOVAL OF LID
- WHEN LIFTED THE WELDED PEGS WILL LOCK INTO PLACE
- REDUCES MANUFACTURING TIME

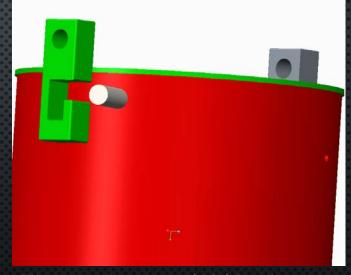


Figure 7. Proposed Lid Design

Group 17 Belal Nabulsi Slide 16 of 30

LATCH STRESS ANALYSIS

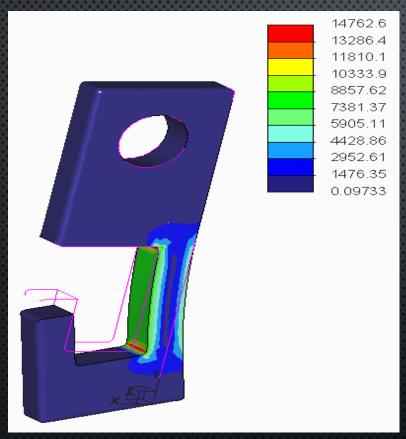


Figure 8. von Mises' Stress (psi)

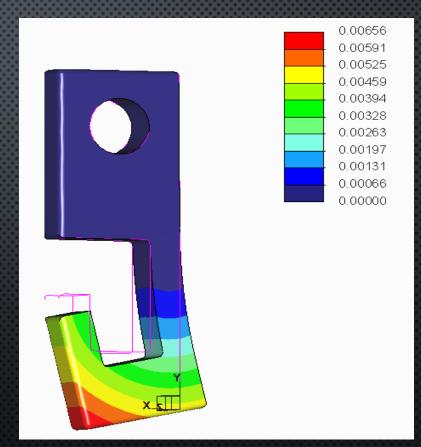
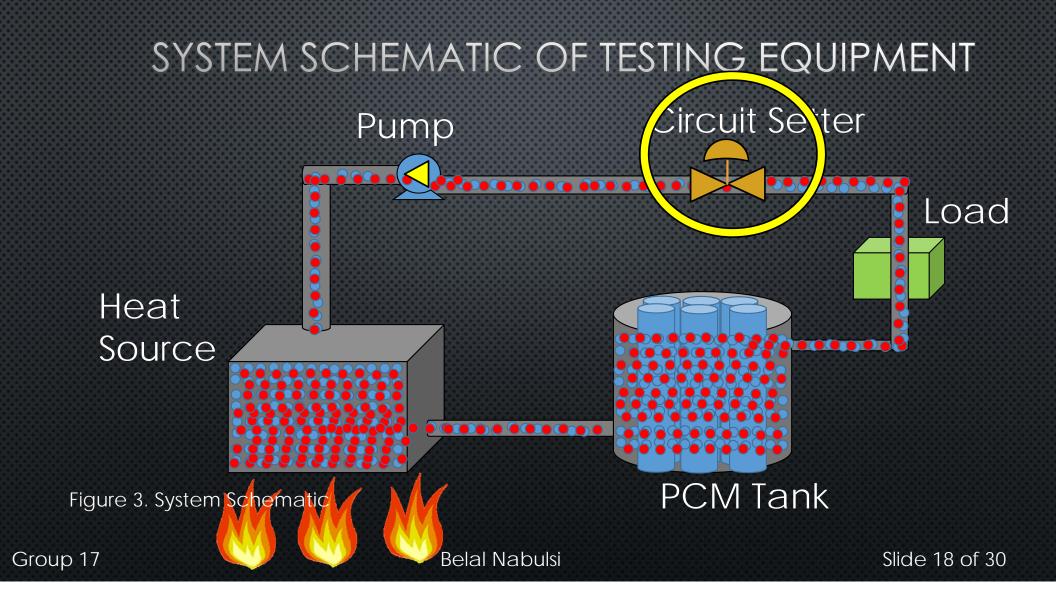



Figure 9. Displacement (in)

Group 17 Belal Nabulsi Slide 17 of 30

FLOW METER VS. CIRCUIT SETTER

FLOW METER

- PROVIDE MEASUREMENTS OF THE FLOW RATE
- But can not control and regulate that flow rate
- REQUIRES ADDITIONAL THROTTLING
 VALVES TO CONTROL FLOW

CIRCUIT SETTER

- PROVIDES ACCURATE FLOW READINGS WITH MINIMAL IMPEDANCE
- REGULATES FLOW RATES
- Does not require additional valves

Group 17 Belal Nabulsi Slide 19 of 30

CIRCUIT SETTER

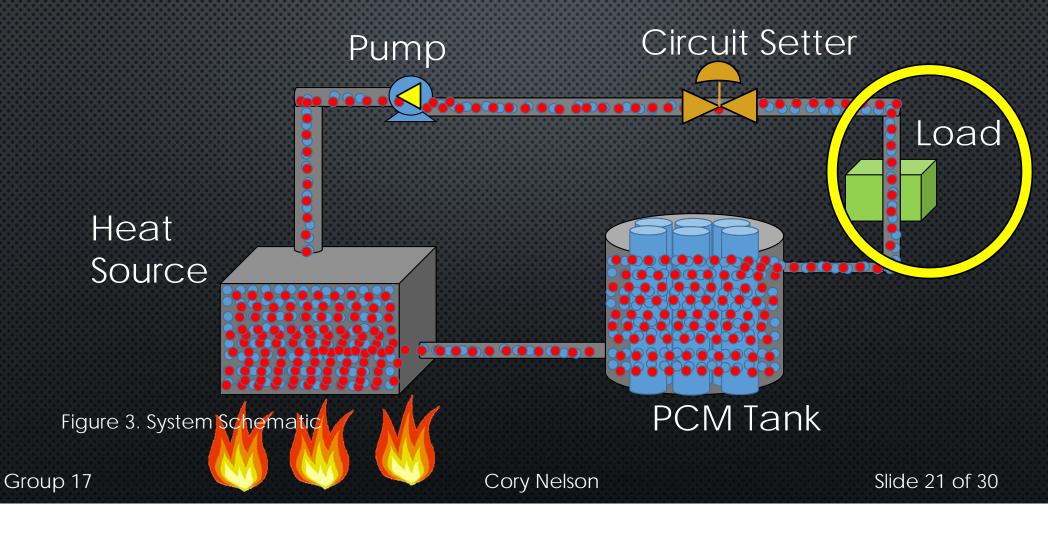

- Can be set to automatically regulate flow rates
- BUILT IN BALANCE VALVE
- INCUR LOW HEAD LOSS RELATIVE TO TYPICAL VALVES

Figure 10. Bell & Gossett Circuit Setters

Group 17 Belal Nabulsi Slide 20 of 30

SYSTEM SCHEMATIC OF TESTING EQUIPMENT

HEAT EXCHANGER LOAD

Lytron Liquid to air heat Exchanger

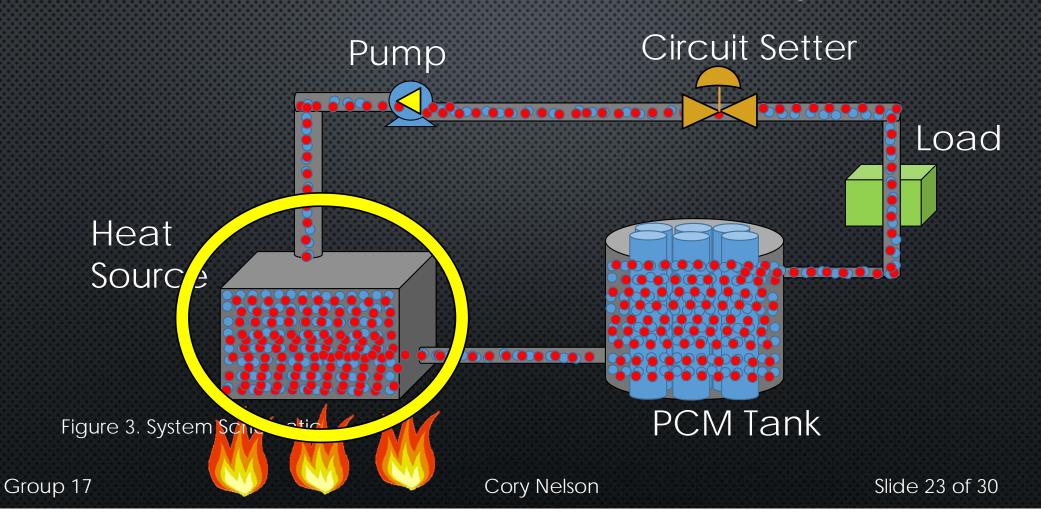

- PROVIDED BY VERDICORP
- RATED AT 255W
- PRODUCES A TEMPERATURE DROP OF 10°C

Figure 9. Lytron 6105G1SB-D9 Heat Exchanger

Group 17 Cory Nelson Slide 22 of 30

SYSTEM SCHEMATIC OF TESTING EQUIPMENT

HEAT SOURCE

CARTRIDGE HEATER

- PROVIDED BY VERDICORP
- RATED AT 1000W EACH ONLY 1 IS NEEDED AT STEADY STATE
- USING Q = $\dot{m}C_p(230^{\circ}\text{C}) \approx 6,000W$
- NEED UP TO 6 CARTRIDGES TO HAVE SPEEDY START UP TIME

Figure 10. Generic Cartridge Heaters

Group 17 Cory Nelson Slide 24 of 30

HEAT SOURCE

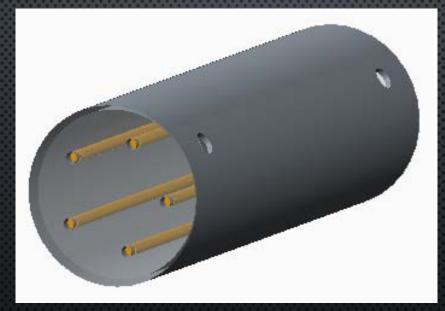


Figure 11. Generic Cartridge Heaters

Group 17 Cory Nelson Slide 25 of 30

THE WONEY!

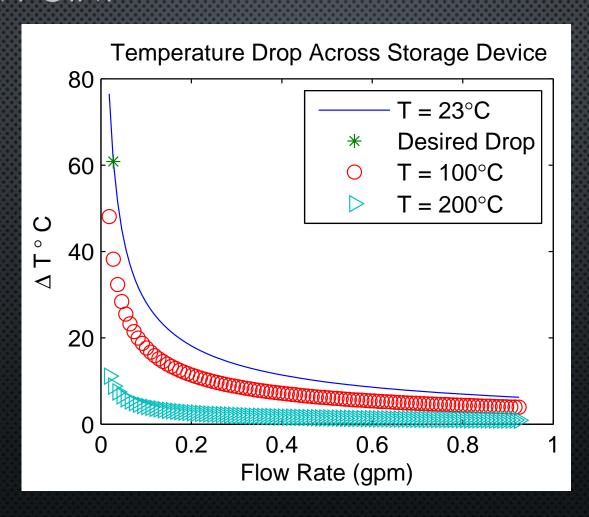
Verdicorp ENVIRONMENTAL TECHNOLOGIES	
---	--

ENVIRONMENTAL TECHNOLOGIES											
			T								Date of
Item/Product Number	Description	Quantity	ty Rate		Ar	nount	Shi	ipping	Total		Purchase
	Dynalene MS-1										
1.)Purchased	Molten Salt for thermal storage in Granular Solids (50lbs)	50	5	\$ 6.00	\$	300.00	\$	180.00	\$	480.00	1/6/2015
2.)Purchased	Duratherm HF - 5 gallon pail	2	,	\$ 203.05	\$	406.10	\$	36.74	\$	442.84	1/10/2015
4). Purchased	High-Temperature Mineral Wool Insulation, 24"x48"	3	,	\$ 13.35	\$	40.05	\$	10.00	\$	50.05	1/27/2015
Yet to be purchased (supplier)											
6.) 4548k177 (McMaste-Carr)	5" Standard-wall Stainless Steel Threaded Pipe Type 316	6	Ş	\$ 8.56	\$	51.36					
7.) 4452k414 (McMaste-Carr)	90 Degree 1/2" Pipe Elbows Type 316 Steel	2		\$ 8.16	\$	16.32					
8.) (onlinemetals.com)	Hot Rolled steel Plate 1/8" Thick (36"x48")	2	,	\$ 86.89	\$	173.78	\$	75.00			
9.) (onlinemtals.com)	Hot Rolled steel Plate 1/4" Thick (24"x 48")	1	. ;	\$ 147.72	\$	147.72	\$	75.00			
10.) 93565A130 (McMaster-Carr)	6 ft Stainless Steel Threaded Rod	1	. ;	\$ 43.22	\$	43.22					
11.) 4452k238 (McMaster-carr)	1/2" Pipe Caps Type 316 Stainless Steel	2	,	\$ 4.54	\$	9.08					
Projected Cost							\$	1,564.37			
Total Spent									\$	972.89	
Total Remaining									\$ 1	1,027.11	

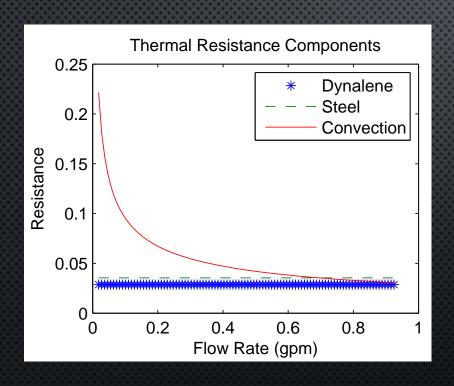
WHAT'S NEXT

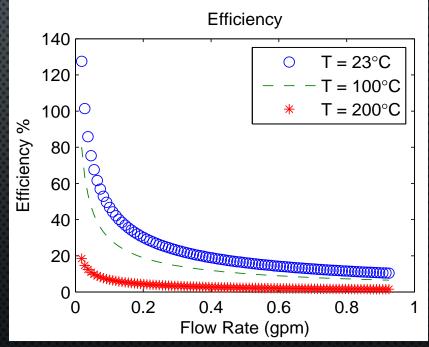
- COMPLETE SIMULATION IN MATLAB
- FINALIZE PURCHASES
- START BUILDING
- START TESTING

					-		В				-		В		
				·C	21, '14	4		B, '15	Fe	b 15,	15	Mar		15	Apr 12
Task Name ▼	Duration ▼	Start	Finish ▼	1	5 T		М	F	T	S	W	S	T	М	F
4 Purchases	20 days	Mon 1/5/15	Fri 1/30/15					l							
50LB Ms-1	3 days	Mon 1/5/15	Wed 1/7/15												
Duratherm HF 10GAL	3 days	Mon 1/5/15	Wed 1/7/15												
Exterior tank	15 days	Mon 1/5/15	Fri 1/23/15												
Piping Insulation	15 days	Mon 1/5/15	Fri 1/23/15												
Inlet/outlet Piping	15 days	Mon 1/5/15	Fri 1/23/15												
Flow meter	15 days	Mon 1/5/15	Fri 1/23/15												
Baffle Material	20 days	Mon 1/5/15	Fri 1/30/15					I							
Threded rods	15 days	Mon 1/5/15	Fri 1/23/15												
Nuts and washers	15 days	Mon 1/5/15	Fri 1/23/15												
4 Simulation & Modeling	26 days	Mon 1/5/15	Mon 2/9/15												
Vertical Configuration	1 day	Sun 2/8/15	Sun 2/8/15												
Horizontal Configuration	1 day	Sat 2/7/15	Sat 2/7/15					1							
CAD Modeling	25 days	Mon 1/5/15	Fri 2/6/15												
Submit Drawings to Sponsor	1 day	Fri 2/6/15	Fri 2/6/15					1							
▶ Building	14 days	Mon 2/16/15	Thu 3/5/15												
▶ Testing	21 days	Mon 3/9/15	Mon 4/6/15											٦	
▶ Evaluation on tests	7 days	Wed 4/1/15	Thu 4/9/15												
▶ Future Suggestions	7 days	Sat 4/11/15	Mon 4/20/15												=
▶ Presentation Prep	5 days	Mon 4/20/15	Fri 4/24/15												


Figure 12. Team Scheduling

RESOURCES


- HASNAIN, S.M., "REVIEW ON SUSTAINABLE THERMAL ENERGY STORAGE TECHNOLOGIES, PART 1: HEAT STORAGE MATERIALS AND TECHNIQUES," ENERGY CONVERSION MGMT., Vol. 39 No. 11 PP1127-1138, 1997.
- Sharma, Atul, Tyagi, V.V., Chen, C.R., Buddhi, D., "Review on Thermal Energy Storage with Phase Change materials and applications," Renewable and Sustainable Energy Reviews 13, pp318-345, 2009.
- Cengel, Yunus, and Cimbala, John M., and Turner, Robert, Fundamentals of Thermal Fluid Sciences, 4th ed., New York, New York, 2011
- Mukherjee, R, (2014, December 20) Effectively Design Shell-and-Tube Heat Exchangers.
 (1st ed.) [Online] Available:
 http://www.mie.uth.gr/ekp_yliko/CEP_Shell_and_Tube_HX.pdf



OPERATION POINT

INNOVATION

STORAGE MEDIUM & TRANSFER FLUID

DYNALENE MS-1

- MOLTEN SALT WITH MINIMAL CORROSION TO STAINLESS STEEL
- STABLE THERMAL PROPERTIES THROUGHOUT OPERATION TEMPERATURE RANGE
- 3% expansion allows for higher power density per capsule

DURATHERM HF

- PETROLEUM BASED
- HIGH OXIDATION RESISTANCE
- Low viscosity
- AVAILABLE AT THE PRICE OF SYNTHETIC CAR
 OIL
- FLASH POINT OF 275°C