Wireless Infrared Monitoring System

Midterm I Presentation 10/16/2014

GROUP 14

MICHELLE HOPKINS

JOSEPH BESLER

KENNY BECERRA

NIXON LORMAND

JONATHAN JENNINGS

ALEXANDER HULL

FACULTY ADVISORS

ME: DR. HOLLIS EE: DR. AURORA

Project Description

Need Statement

"There is a need for an improved method of monitoring critical equipment under operation in power plants."

Goal Statement

"Design a proposed complete system that can monitor a wide range of equipment for problematic operation."

Objectives

- Design a stand-alone system that does not consume any auxiliary power
- 2. Decrease equipment interference on operating systems
- Decrease manual work needed for preventative maintenance
- Create cost savings through the elimination of need for numerous existing systems

Project Constraints

Subject	Constraint
Location	Fossil Fuel Power Plants
Lifetime	30 years
Wind	Maximum 100 mph
Ambient Temperature	0-110° F
Monitoring	Thermal Imaging
Power	Solar Harvesting
Battery Storage	3 days
Communication	Wireless, Hart Protocol
Compliance	NERC, IBC2006
Weatherproofing	IP55
Movement	360° pan, 90° tilt
Budget	Designed System: \$20,000 /Proof of Concept: \$2,000

GROUP 14
MICHELLE HOPKINS

Performance Scope

- Self-powered
- Self-supported
- Self-sustaining for 3 days
- Autonomous
- Wireless
 Communication

Reference Plant

Subsystem Down-Selection

INFRARED CAMERA
PAN TILT MODULE
MICROCOMPUTER
BATTERY STORAGE
SOLAR ARRAY

Infrared Software Functionality

Infrared Camera Selections

FLIR A-Series (A310)		
Weight:	11 lb.	
Dimensions:	460 x 140 x 159 mm	
Protection:	IP66	
Temp Range:	-13° to 122°F	
Image Temp:	32° to 662°F	
Power:	25 W	
Output:	MPEG-4 over Ethernet	
Resolution:	320 x 240 pixels	
\$FLIR		

Dolog Sariy TI Sarios		
Pelco Sarix TI Series		
Weight:	7.2 lb.	
Dimensions:	376 x 126 x 128 mm	
Protection:	IP66	
Temp Range:	-40° to 122°F	
Image Temp:	-4° to 248°F	
Power:	35 W	
Output:	MPEG-4 over Ethernet	
Resolution:	640 x 480 pixels	

Pan-Tilt Module

Design Specifications:

- Pan 360°/Tilt: 90°
- Durable (30 years)
- Efficient
- Support Payload (20 lb)

- Payload Wiring
- Real time control interface
- Software Development Kit (SDK)

FLIR: PTU D100		
Weight:	19 lb.	
Dimensions:	307 x 208 x 200 mm	
Protection:	IP67	
Temp Range:	-22° to 158°F	
Power:	33 W	
Max Payload	20 lb.	
Pan-Tilt:	Pan: 360°, Tilt: +30°-90°	

- Interfaces with:

 Infrared Camera
 Transceiver
 Pan Tilt Module
- Must process infrared data and package it to be sent to the transceiver
- Control the functions of the motors & camera with proper drivers

Key Common Component: the Microcomputer

Battery Selections

Lead Acid Based

low cost per Watthour

- Low self-discharge
- High specific power
- Good low & high temperature performance
- Economically priced
- Low specific energy
- Slow charge
- Prone to sulfation
- Limited cycle life

Pro

- **Con** Flooded version requires watering
 - Transportation restrictions on flooded type

Nickel Based

- 1,000 charge/dischar ge cycles
- Good load performance
- Long shelf life

- Pro Simple storage and transportation
 - Good lowtemperature performance
 - Economically priced

 Relatively low specific

- **Con** needs periodic full discharges
 - High self-discharge

Lithium Based

- High energy density
- **Pro** Relatively low selfdischarge
 - Low maintenance.

 Requires protection circuit to limit voltage & current

Con • Subject to aging

 Transportation regulations

Solar Panel Selections

Preliminary Battery & Solar Panel Choice

Lead Acid Battery

- Advantages
 - Highest efficiency rates of 15-20%
 - Monocrystalline silicon are spaceefficient
 - Monocrystalline panels live the longest ~25 year warranty
- Disadvantages
 - Monocrystalline solar panels are the most expensive
 - Possibility of breakdown from partial shading
 - More efficient in warm weather

- Flooded
- Deep cycle
- Low maintenance
- More charge/discharge cycles

Lead Acid Battery

Deep Cycle

Flooded

Project Schedule

Questions?