Sealing Ring Testing and Characterization Spring Update

Team 1: Tawakalt Akintola Richard Edgerton Erin Flagler Emilio Kenny Kenneth McCloud

Sponsored by: Cummins, Inc. Advised by: Dr. Oates and Dr. Alvi

Erin Flagler Spring Update

Team #1 Slide 1 of 16

Outline

- Introduction and Goals
- Objectives and Scope
- Testing
- Result Expectations
- Challenges
- Scheduling

Team #1 Slide 2 of 16

Introduction

- Elastomeric sealing rings are:
 - Seal engine components
 - Resistant to high temperature, pressure differences, and corrosive chemicals
 - Not always circular cross sections
 - Certain cross sections perform better in particular applications
 - Reduction in material lowers cost
- Current sealing ring selection process requires multiple iterations of finite element analysis
 - Time Consuming
 - Costly
- <u>GOALS</u>: To improve the sealing ring selection
 - Provide approximate starting point for analysis
 - Reduce the number of FEA iterations
 - Reduce time and effort needed

Team #1 Slide 3 of 16

Objectives

Team 1 will attempt to improve the selection process by:

- Examining sealing rings in static face seal-compression tests
- Searching for correlations between sealing ring properties
 - the physical geometry of the sealing rings
 - the pressure required to make a complete seal
 - the percentage the sealing ring was crushed to achieve seal
- Correlations used to create a user interface
 - Input application parameters
 - Output shape factor corresponding to appropriate cross section geometries

Project Scope

- New process should be applicable to a variety of FKM sealing ring cross sections
- FKM material
 - Common material used by Cummins, Inc. and other manufactures
 - Is very resistant to heat and chemicals compared to other elastomers
 - Versatile for use in wide range of applications
- Cross sections determined by Cummins, Inc.
 - 23 total cross section geometries
 - Widths ranging from 1 to 10 millimeters
 - Size chosen to accommodate max load of 1 kN by MTS machine
 - Measuring crush up to 40% in 5% increments

Team #1 Slide 5 of 16

Delimitations

- General Assumptions
 - Clean environment
 - Ambient temperature and pressure

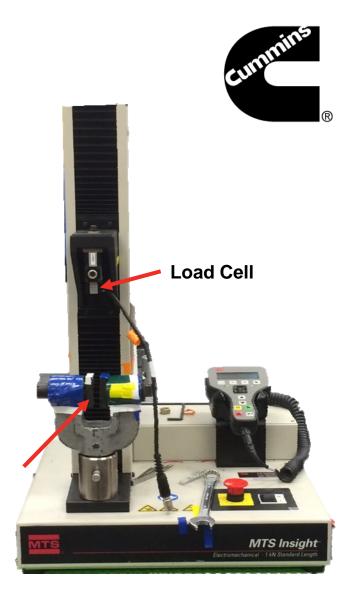
Delimitations

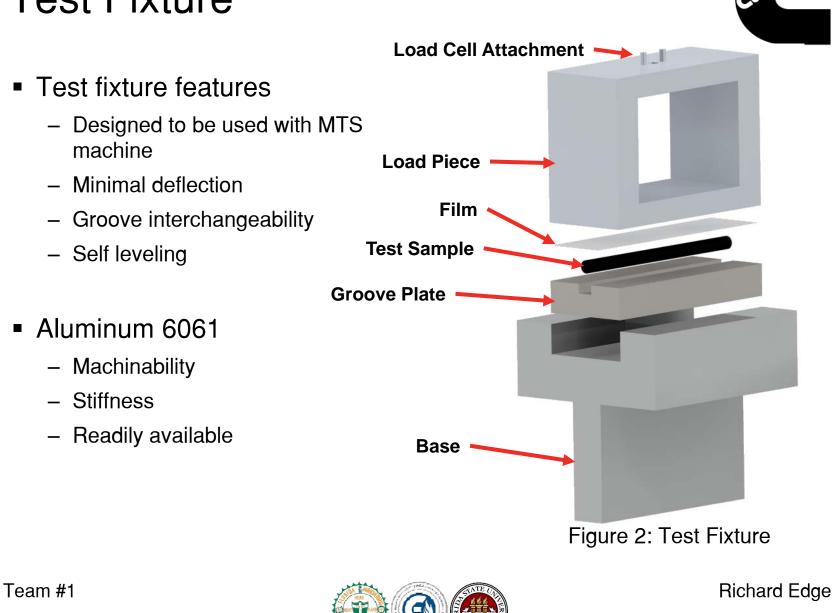
- Small, straight samples
- Static, face seal vs. dynamic radial seal
- Zero tension on seal
- One time use samples no fatigue
- Wall effects from grooves ignored for regular samples

Test Method

- Testing Parameters
 - Compression
 - Increments of percent crush
 - Straight sections of seals
- Measurements
 - Load needed to achieve percent crush
 - Sealing pressure given by pressure sensitive film

Test Fixture Vice




Figure 1: MTS Machine

Team #1 Slide 7 of 16

Test Fixture

Slide 8 of 16

Richard Edgerton Spring Update

R

Preliminary Data Assessment

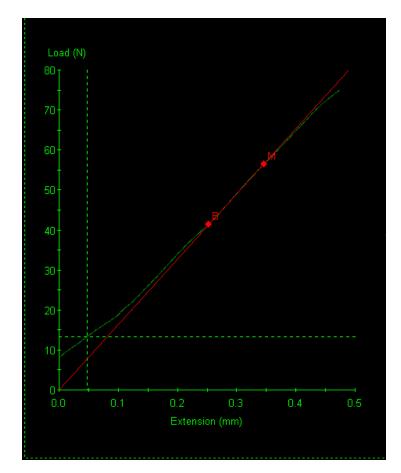


Figure 3: Data output from MTS machine

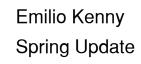
- Fujifilm Prescale
 - 200 kPa ~10,000 kPa
 - Three sensitivities required
 - Film to be shipped to Cummins scanned and imported into excel to be processed
- Load Cells
 - 5 N, 100 N, and 1 kN
 - Various options for measurement

Team #1 Slide 9 of 16

Richard Edgerton Spring Update

Test Result Expectations

- Define correlation between cross sections
 - Relate percent crush, shape factor, and sealing pressure
- Develop 3-D contour plot
 - Used to find starting point for FEA
- User Interface options
 - MatLab Program
 - Excel spreadsheet
 - User manual

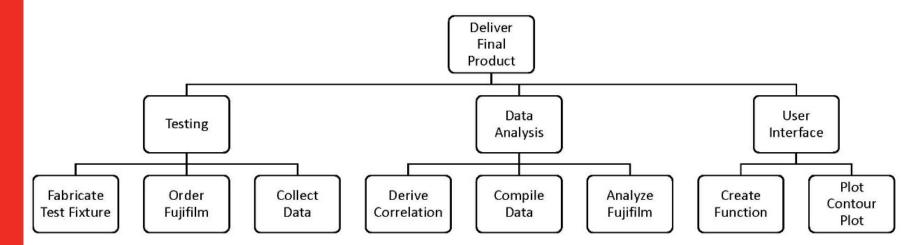

Team #1 Slide 10 of 16

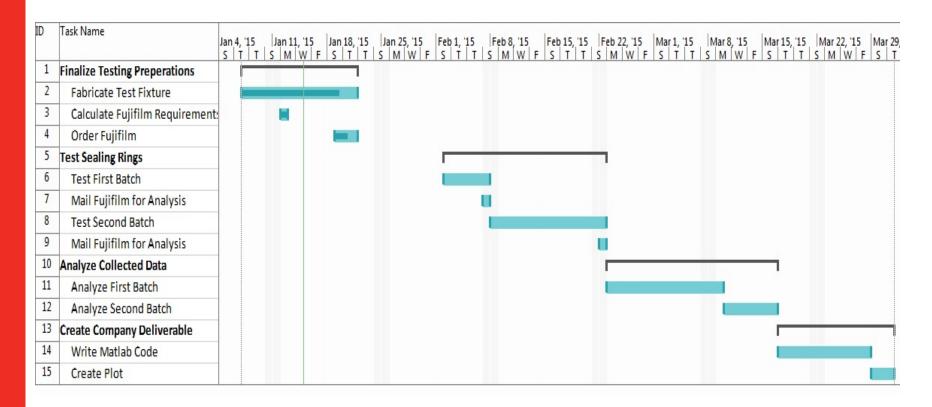
Challenges

- Organization
 - Handling lots of pressure sensitive film5-40%, for 2 trials, for every cross section
- Test Procedure Consistency
 - Ensure reliable and easily reproducible data
- Data Analysis
 - Testing Delay
 - Relate multiple data curves
 - Find Major Factor
- Final product
 - Limited Programming Technique

Team #1 Slide 11 of 16

Scheduling - Work Breakdown




Figure 5: Workflow Breakdown Structure

Team #1 Slide 13 of 16

Scheduling - Gantt Chart

Team #1 Slide 12 of 16

Summary

- Currently:
 - Test fixture is in fabrication
 - Fujifilm sensitivities are being calculated
 - Testing will begin in February
- Challenges
 - Data Organization
 - Test Consistency
 - Data Analysis
 - Interface Development

Team #1 Slide 14 of 16

QUESTIONS? COMMENTS?

Team #1 Slide 15 of 16

REFERENCES

- 1. MTS Machine. n.d. Webpage. 10 October 2014. http://www.testresources.net/200-series-electromechanical-test-machines/210m1125-standalone-test-machines/>.
- 2. 3D Contour Plot. n.d. Webpage. 10 October 2014. http://www.agocg.ac.uk/reports/graphics/34/appii97/chapte_7.htm.
- 3. Fujifilm Paper. n.d. Webpage. 10 October 2014. < http://sensorprod.ca/>.

