Team 27(ME)/18(ECE): Mars Lander Robot Recharger

Final Presentation

Team Members/Advisors

Team Members

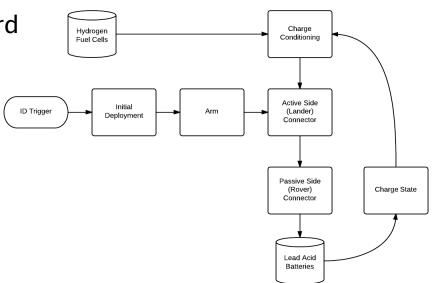
- Itiel Agramonte
- Dean Gonzalez
- Lucas Kratofil
- Tyler Norkus
- James Whaley

Advisors/Technical Contacts

- Dr. Moore ME Advisor
- Dr. Arora ECE Advisor
- Van Townsend Technical Point of Contact
- Michael Solomon Intellectual Property Point of Contact

James Whaley

Mission


- There are Martian excavators which will be collecting samples and delivering them for testing.
- In order to decrease the weight of each rover, battery recharging is an external process.
- Our mission is to design the recharging system for the excavators.

James Whaley

Project Scope

- Get power from the stationary lander to the rovers
- Hydrogen fuel cell bank on board the lander
- Two 12V Lead Acid Batteries onboard
- the rovers
- Rovers drive up to be refueled
- Station records current charge state
- Fills batteries to 100%

James Whaley

4

Budget/Procurement

	Cost (in USD) to Prototype as Designed
Prototyping	
TOTAL COST TO PROTYPE	1099.84
Testing	
TOTAL COST TO TEST	119.27
SHIPPING AND HANDLING CHARGES	250.00
UNFORESEEN EXPENSES	530.89
GRAND TOTAL	2000.00

- Procurement began in November.
- Final purchase orders have been placed.

James Whaley

Design Constraints

- Efficiency
 - >75% Required
 - >90% Preferred
- Mass
 - Rover Connection
 - <2 kg Required</p>
 - <1 kg Preferred</p>
 - Arm
 - <4 kg Required
- Charge Time
 - 8 hrs maximum

James Whaley

Connection Designs

- All design decisions relied on the design and operation of the connection between lander and rover.
- Several decisions had to be made early on.
 - Wireless or Physical?
 - Active or Passive?
 - Shielded or exposed?
- The team went through several design iterations before landing on the final design.

Itiel Agramonte

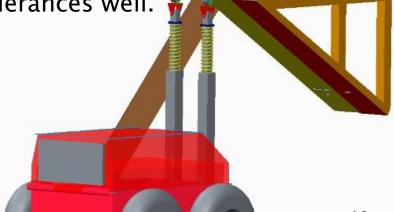
CPT Hybrid Design

- An earlier design relied on a wireless power transfer backup
 - In the event of connection obstruction, power could still be transferred.
 - The connection terminals are treated like the plates of a capacitor.
- Design driven by concerns about dust storms
- Added mass and complexity found to be unjustifiable.

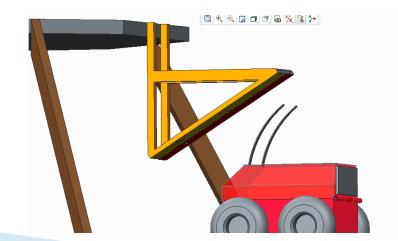
Itiel Agramonte 8

CPT Docking Station

- Contact-CPT Hybrid
- Minimal arm control
- Requires static Martian Surface
- Rover Side plate must be Larger than Lander Side plate

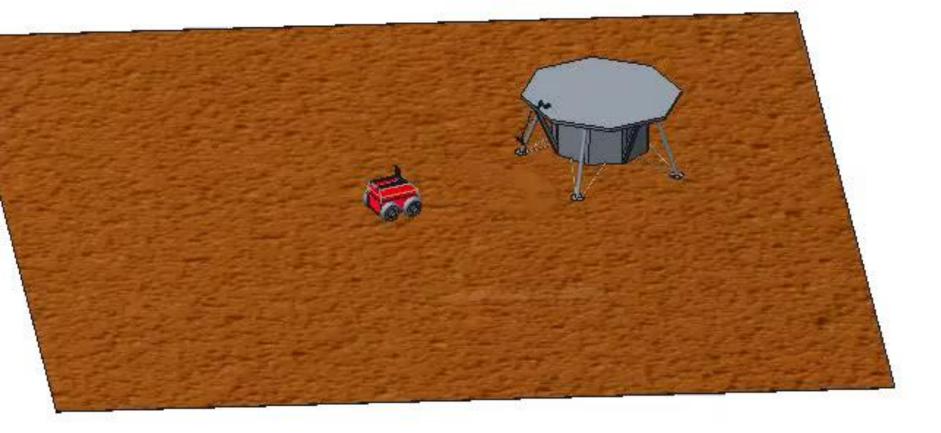

600

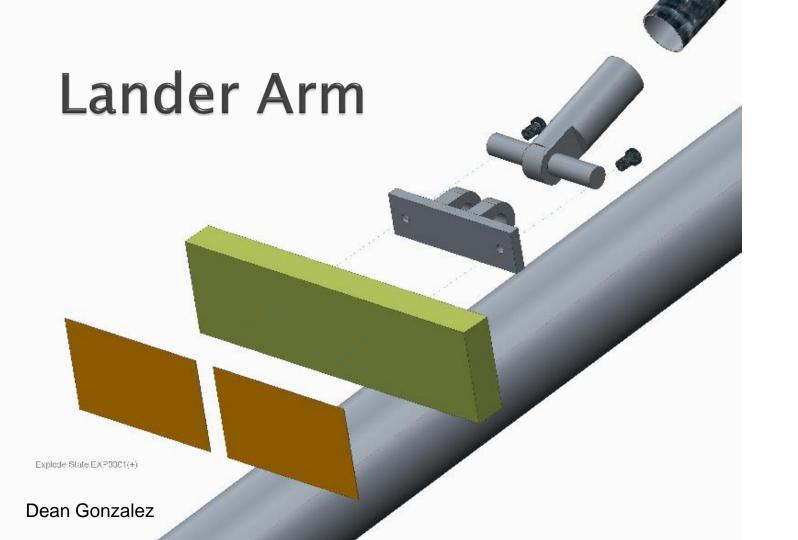
New Concept

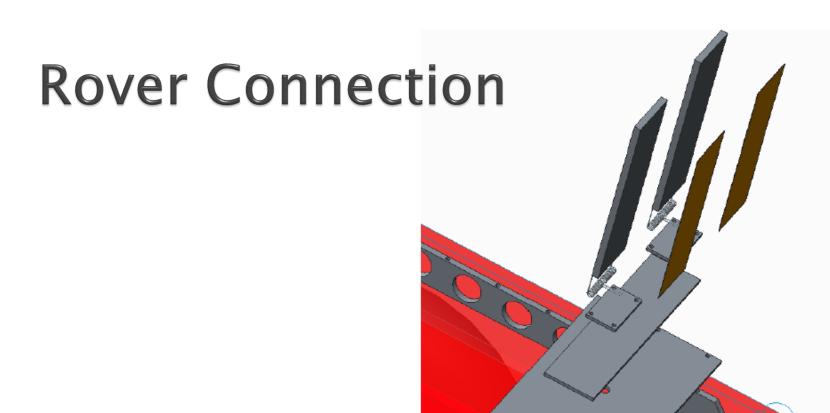

- Whole family of designs around an angled plate docking station.
- No more wireless backup.
- First concept involves spring mounted contacts.

Handles translational and rotational tolerances well.

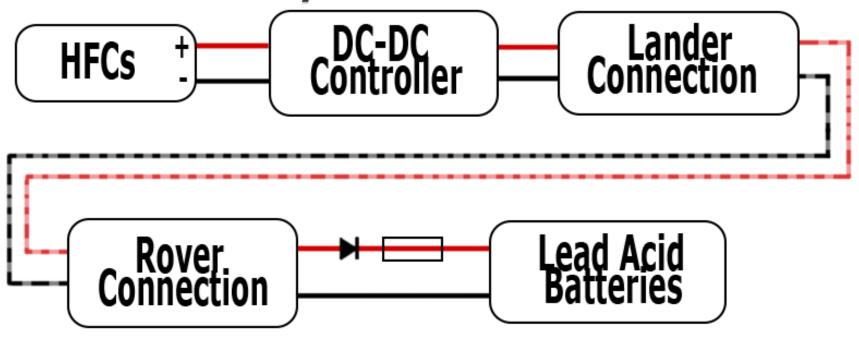
Leaf Spring Concept


- Give the Rover antennae.
- Light, simple, easy to meet ALL required tolerances.
- Very easy to manufacture and test.




Arm Design

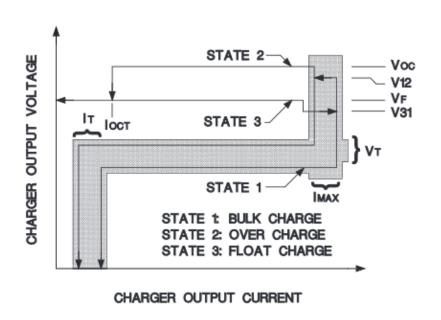
- New arm design concept driven by Passive control method
 - Reduced mass
 - Reduced power consumption
 - Reduced complexity and required arm control
- Arm must be mounted to top of lander deck
- Arm is deployed from initial storage position

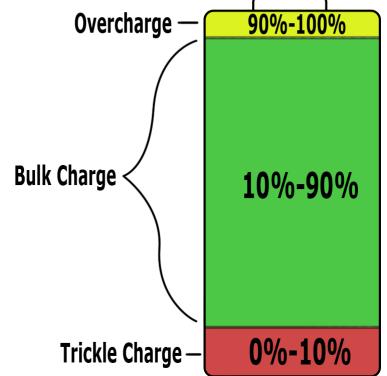

Dean Gonzalez

Electrical System

Charge Control

Power Stream PST-BC2424-10 DC-DC


• 24-32V input


- Adjustable output current, up to 10 Amps
- 4 stage charging algorithm
- Short Circuit/polarity protection

Four State Charging

Float Charge

Safety and Ergonomics

 QinetiQ has asked for safety systems to protect workers in the Lab.

Risk:

- · Possibility for shocks/burns to occur if human hand were to be placed on plate
- Possibility for metal tools to short plates creating a sudden large current that could burn out the lander circuit

Solution:

- First charge stage is current-limited, <100mA.
- Diode at the base of the rover connection.
- Fuse in the rover.

Conclusions/Analysis

- Full arm design completed
 - Simple/Robust/Reliable
 - NASA Approves
- Completed lander and rover connection designs
 - · Effective design for the application, efficient, and safe
- Materials selection process
 - Lightweight, within mass constraints of <4kg
 - Low forces/stresses experienced
- Procurement completed
 - Complications encountered with contact

Tyler Norkus 20

Recommendations for Future Work

- Build final prototype out of correct materials
 - Only have ¼ scale 3D printed visual model
 - Ensure full-size working prototype of arm
 - Test initial deployment is successful
 - NASA should test system using rovers in the lab at acceptable angles of approach and elevation angles
- Test charge circuit (measure efficiency to ensure within requirement of >75%)
 - Test using 50% drained batteries

Tyler Norkus 21

Acknowledgements

NASA/Qinetiq Sponsor:

FSU COE Faculty:

Team 27 Members

References

- [1] http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_types.html
- [2] http://www.afcenergy.com/technology/advantages_of_alkali_fuel_cells.aspx
- [3] http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/fc_comparison_chart.pdf
- [4] http://en.wikipedia.org/wiki/Atmosphere_of_Mars
- [5] http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1554624&tag=1
- [6] http://www.jameco.com/Jameco/Products/ProdDS/178597.pdf
- [7] http://www.space.com/16907-what-is-the-temperature-of-mars.html
- [8] http://www.nasa.gov/audience/foreducators/topnav/materials/listbytype/What_Is_the_Temperature.html
- [9] http://quest.nasa.gov/aero/planetary/mars.html
- [10] http://www.jpl.nasa.gov/news/press_kits/MSLLaunch.pdf

Questions, Comments?

