Team 27(ME)/18(ECE): Mars Lander Robot Recharger

Midterm Report 1

Team Members/Advisors

Team Members

- James Whaley Project Lead/ME Lead
- Lucas Kratofil ECE Lead
- Dean Gonzalez Financial Advisor/Secretary
- Itiel Agramonte Webmaster
- Tyler Norkus Webmaster

Advisors/Technical Contacts

- Dr. Moore ME Advisor
- Dr. Arora ECE Advisor
- Van Townsend QinetiQ Liaison
- Michael Solomon QinetiQ Intellectual Property Contact

Mission

- NASA has a need for more efficient exploration missions
- Reducing mass increases efficiency
- Design a mission around a stationary lab/fuel station
- A fleet of rovers explores and collects samples
- Deposit samples at the base and recharges
- No need for large, heavy batteries and power generation systems onboard the rovers.

Project Scope

- Get power from the stationary lander to the rovers
- Hydrogen fuel cell bank on board the lander
- Two 12V Lead Acid Batteries onboard the rovers
- Rovers drive up to be refueled
- Station records current charge state
- Fills batteries to 100%

Design Constraints

• Efficiency

- >75% Required
- >90% Preferred

Mass

- Rover Connection
 - •<2 kg Required</p>
 - •<1 kg Preferred</p>
- Arm
 - 4 kg Required
- Volume

Task Dependencies

Dean Gonzalez

Power Transfer Method

- Contact or Wireless Power Transfer?
 - · Contact Power Transfer: Typical Male-Female Plug
 - Types of Wireless Power Transfer:
 - Inductive
 - Laser
 - Microwave
 - Researching Capacitive Power Transfer (CPT) Lead Us to a Unique Solution
 - External Contact with CPT Backup System (Hybrid)
 - Three Power Transfer Options
 - Physical
 - Physical/CPT Hybrid
 - Wireless
 - Ruled out wireless using a Decision Matrix

Dean Gonzalez

Concept 1: Pin-Socket

- Physical
- Pros
 - \circ Simple
 - o Light
 - o Symmetric
 - o Efficient
- Cons
 - o Dust
 - Sophisticated arm control
 - NASA/QinetiQ says to avoid

Time:00

Concept 2: Paddle/Slot

- Physical
- Pros
 - More robust than pin
 - o Brushes reduce dust
- Cons
 - Sophisticated arm control
 - Difficult to align paddle with slot

Concept 3: Paddle/Clamp

- Physical
- Pros
 - o More robust than pin
 - Remedies alignment difficulties of paddle/slot design
- Cons
 - Sophisticated arm control
 - o More moving parts
 - o Cavity collects dust

Contact/CPT Hybrid

- Primarily physical contact connection
- Two pairs of plates meet to transfer power
- Physical Obstruction initiates CPT backup
- High frequency power treats the plates as a capacitor
- Power is transferred through the electric field between plates
- 65-90% efficiency depending on conditions

Concept 4: Blunted-Cone

- Contact-CPT hybrid
- Pros
 - Fully symmetric
 - Resistant to dust
 - Simpler Arm Control
- Cons
 - o Difficult to manufacture
 - Requires strict dimensional tolerances

Concept 5: Moving Plate

- Contact-CPT Hybrid
- Pros
 - Resistant to dust
 - Easy to manufacture
- Cons
 - Sophisticated arm control
 - o Catches wind
 - Non-Symmetric

Concept 6: POCCET Station

Vime do

- Contact-CPT Hybrid Pros
 - Minimal arm control
 - Easy to prototype/test
 - Resistant to dust
- Cons
 - o Not symmetric
 - Requires static
 Martian Surface
 - \circ Catches wind

Decision Method

- 6 Initial Connector Concepts
- Decision Matrix to weed out dead-ringers
- 4 high-ranking concepts remain
- Qualitative analysis, pros/cons list
- Decision

_	Rank	Plug – 1 Pin	Paddle – Single Slot	Paddle - Clamp	Blunted Cone	Roomba Station	Moving Plate
Mass	0.2	8.5	6.5	6	6.5	8	8
Reliability	0.16	7.5	8	8.5	8.5	9	8.5
/olume	0.12	9	8	7	7.5	8	7.5
Robustness	0.12	3.5	7	6.5	8	7	8
Simplicity – Design	0.08	9	8	7	7	8	7
Simplicity - Jse	0.12	4	4	5	9	7.5	8.5
Efficiency	0.2	10	10	10	7	7	7
Fotal	1	51.5	51.5	50	53.5	54.5	54.5

Design Considerations

- All design decisions are dependent on the connector
- The arm design is the next crucial design decision
- Design specifications include:
 - o Material
 - o Geometry
 - o Movement
- Several considerations taken into account
 - Forces
 - Martian dirt and dust storms
 - Minimize movement
 - Ease of manufacture
 - Reduced Gravity

Dean Gonzalez

Conclusion

- Connector decision has been made
- Next steps
 - In the process of subsequent design decisions
 - More detailed connector design
- Budget proposal for NASA/Qinetiq
- Aggressive schedule to catch up (on-track)

References

- [1] <u>http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_types.html</u>
- [2] <u>http://www.afcenergy.com/technology/advantages_of_alkali_fuel_cells.aspx</u>
- [3] http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/fc_comparison_chart.pdf
- [4] <u>http://en.wikipedia.org/wiki/Atmosphere_of_Mars</u>
- [5] http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1554624&tag=1
- [6] http://www.jameco.com/Jameco/Products/ProdDS/178597.pdf
- [7] http://www.space.com/16907-what-is-the-temperature-of-mars.html
- [8] <u>http://www.nasa.gov/audience/foreducators/topnav/materials/listbytype/What_Is_the_</u> <u>Temperature.html</u>
- [9] http://quest.nasa.gov/aero/planetary/mars.html
- [10] <u>http://www.jpl.nasa.gov/news/press_kits/MSLLaunch.pdf</u>

Questions, Comments?

