Team 27(ME)/18(ECE): Mars Lander Robot Recharger

MEAC Presentation

Team Members/Advisors

Team Members

- James Whaley
- Itiel Agramonte
- Tyler Norkus
- Lucas Kratofil
- Dean Gonzalez
- Advisors/Technical Contacts
 - Dr. Moore ME Advisor
 - Dr. Arora ECE Advisor
 - Van Townsend QinetiQ Liaison
 - Michael Solomon QinetiQ Intellectual Property Contact

Mission

- NASA has a need for more efficient exploration missions
- Reducing mass increases efficiency
- Design a mission around a stationary lab/fuel station
- A fleet of rovers explores and collects samples
- Deposit samples at the base and recharges
- No need for large, heavy batteries and power generation systems onboard the rovers.

Project Scope

- Get power from the stationary lander to the rovers
- Hydrogen fuel cell bank on board the lander
- Two 12V Lead Acid Batteries onboard the rovers
- Rovers drive up to be refueled
- Station records current charge state
- Fills batteries to 100%

Design Constraints

• Efficiency

- >75% Required
- >90% Preferred

Mass

- Rover Connection
 - •<2 kg Required</p>
 - •<1 kg Preferred</p>
- Arm
 - •<4 kg Required</p>
- Charge Time
 - 8 hrs maximum

Power Transfer Method

- Contact or Wireless Power Transfer?
 - Contact Power Transfer
 - Types of Wireless Power Transfer:
 - Inductive
 - •Laser
 - Microwave
 - Researching Capacitive Power Transfer (CPT) Lead Us to a Unique Solution
 - External Contact with CPT Backup System (Hybrid)
- Ruled out wireless using a Decision Matrix

Concept 1: Pin-Socket

- Physical
- Pros
 - Simple
 - Light
 - Symmetric
 - Efficient
- Cons
 - Dust
 - Sophisticated arm control
 - NASA/QinetiQ says to avoid

Time:00

Concept 2: Paddle/Slot

- Physical
- Pros
 - More robust than pin
 - Brushes reduce dust
- Cons
 - Sophisticated arm control
 - Difficult to align paddle with slot

Concept 3: Paddle/Clamp

- Physical
- Pros
 - More robust than pin
 - Remedies alignment difficulties of paddle/slot design
- Cons
 - Sophisticated arm control
 - More moving parts
 - Cavity collects dust

Contact/CPT Hybrid

- Primarily physical contact connection
- Two pairs of plates meet to transfer power
- Physical Obstruction initiates CPT backup
- High frequency power treats the plates as a capacitor
- Power is transferred through the electric field between plates
- 65-90% efficiency depending on conditions

CPT Diagram

Concept 4: Blunted-Cone

- Contact-CPT hybrid
- Pros
 - Fully symmetric
 - Resistant to dust
 - Simpler Arm Control
- Cons
 - Difficult to manufacture
 - Requires strict dimensional tolerances

Concept 5: Moving Plate

- Contact-CPT Hybrid
- Pros
 - Resistant to dust
 - Easy to manufacture
- Cons
 - Sophisticated arm control
 - Non-Symmetric

Concept 6: Docking Station

Vime do

- Contact-CPT Hybrid Pros
 - Minimal arm control
 - Easy to prototype/test
 - Resistant to dust
- Cons
 - Not symmetric
 - Requires static Martian Surface

Plate Design

- Plate Material Aluminum
- Plate Coating Still being researched
 - Materials and Techniques (If Necessary)

Charge Control Options

- Texas Instrument's UC3906
 - Trickle Charge If battery is below threshold
 - Bulk Charge Full current delivered, majority of charge restored
 - Over Charge Restores Full Capacity
 - Float Charge Prevents damage from over charging
- LM3914
 - Voltage battery monitor circuit
 - To be used as a relay

Charge Control Options

- All design decisions are dependent on the connector
- The arm design is the next crucial design decision
- Design specifications include:
 - Material
 - Geometry
 - Movement
- Several considerations taken into account
 - Forces
 - Martian dirt and dust storms
 - Minimize movement
 - Ease of manufacture

- The arm will be attached to the top of the lander deck
- Deployed from storage upon initial trigger upon landing
- Possibly stored
 between uses

- Primary design considerations for the arm include the mass and control
- Control is to be passive, if possible
 - Fewer motors lead to less mass and less power consumption
 - Must be able to meet plate on rover accurately

Plate Motion

• Plate will be moved and controlled by a mechanism located within the shaft of the arm

Types of Mechanisms:

Rack and Pinion

<u>Pros</u>

- Very simple
- Easy to implement

<u>Cons</u>

- Possibility of harming umbilicals
- Not a very accurate tolerance

Linear Actuator

Screwjack

- Perfect vertical linear motion
- Will not harm umbilicals

- Heavy in weight
- Consumes power

- More accurate form of actuator
- Tighter tolerances

- Consumes most power
- Bigger in size (would have to make arm diameter larger)

James Whaley

٠

Future Work

- Continued Analysis
 - Arm Structure
 - Arm Motion
- Continued Testing
 - Efficiency
 - Power Conversion

References

- [1] <u>http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_types.html</u>
- [2] <u>http://www.afcenergy.com/technology/advantages_of_alkali_fuel_cells.aspx</u>
- [3] <u>http://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/fc_comparison_chart.pdf</u>
- [4] <u>http://en.wikipedia.org/wiki/Atmosphere_of_Mars</u>
- [5] http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1554624&tag=1
- [6] http://www.jameco.com/Jameco/Products/ProdDS/178597.pdf
- [7] <u>http://www.space.com/16907-what-is-the-temperature-of-mars.html</u>
- [8] <u>http://www.nasa.gov/audience/foreducators/topnav/materials/listbytype/What_Is_the_</u> <u>Temperature.html</u>
- [9] http://quest.nasa.gov/aero/planetary/mars.html
- [10] <u>http://www.jpl.nasa.gov/news/press_kits/MSLLaunch.pdf</u>

Questions, Comments?

