

Senior Design Project Automated High Volume Bearing Bore Gage

Concept Design Review

Team 22

Eric Allgeier – Webmaster Matthew Boler – ME Lead Kevin Flemming – Treasurer Seth Norman – Project Manager / EE Lead Christopher Proffett – Sponsor Liaison

Agenda

Intro to Koyo Bearing Project Objectives Fall Schedule Component Details Design Concepts Possible Selections Spring Schedule Conclusion

Koyo Bearing

- HQ in Nagoya, Japan
- Produce bearings for machinery and vehicles
 - Ball, Tapered Roller, Cylindrical Roller, Spherical Roller
- Factory in Cairo, Georgia
- Contact is Robert Potts

Automated Bearing Bore Gage

- Measures bore sizes
- Determines pass or fail

Problem Statement

- Update the automated bearing bore gage
- Maintain measuring quality and sampling rate
- Allow for networking with Koyo

Objectives

- New GUI
- Replace electrical components
- Keep existing pneumatic system and PLC

Fall Schedule

<u>October</u>

- 1. Research the inner workings of the machine and components.
- 2. Research for a heavy duty industrial rated computer and display.
- 3. Research interfacing options.
- November / December
- 4. Use a Decision Matrix to choose best design.
- 5. Make bill of material for all the parts needed to complete this task.
- 6. Submit our design to Koyo Bearings.
- 7. Quote and order all parts needed for the design.
- 8. Create Project Objectives for Spring Semester.

Pneumatic Solenoid

- Controlled by the PLC
- Solenoid produces a magnetic field
- Magnetic core moves in response to the magnetic field
- Solenoid will be used to control the pneumatic cylinders.

Matthew Boler 6

Pneumatic Cylinders

- Driven by the pneumatic system
- Control all mechanical actions
- Input to a mechanism

Linear Variable Differential Transformer (LVDT)

- Electrical Transformer that measures position
- Primary coil is excited with an alternating current
- Sends out the differential signal between the two secondary coils
- Uses a ferromagnetic core
- In this case, position is related to the pressure

LVDT AC Signal Conditioner (SC)

- The signal conditioner (SC) sends an excitation voltage to the LVDT.
- The SC receives two voltages back from the LVDT.
- From these voltages a calculation is performed, resulting in a position.
- When the position is within tolerances, the SC will send a logical low flag to the PLC.
- SC will send the exact position to the CPU, in the form of an digital signal (32 bit).

PC-104 Board

- PC-104 runs on Controller Area Network (CAN) bus.
- These system are very redundant.
- These system work on a tier level system.

Programmable Logic Control (PLC)

- PLC is the work horse for controlling all mechanical operations.
- PLC will use a logical algorithm to make a decision if the bearing is within tolerance.
- From this decision it will command the actuators that control the pass/fail gate.
- Using existing PLC might make a monetary constraint. (Programming Software cost \$2,500?)

Ethernet Switch

- The switch will network the CPU, SC, and the Koyo plant together.
- The switch will allow ease of design by the use of Ethernet cable. (RJ-45 connectors along with CAT 5e cabling).
- The switch will allow for transmission rate of 10/100/1000 Mbps.

DIN Rail

- Ease of mounting / Replacement
- All components

Central Processing Unit (CPU)

- The CPU will used to collect data from the SC.
- From this data, a histogram will be developed for the plant operator and machine operator convenience.
- CPU will be used to interface between the touch screen monitor and the SC.
- CPU will be used to calibrate the SC for the maximum and minimum bearing size.

Touch Screen Display

- Connects to the CPU via USB and HDMI
- Ease of operation through touch screen
- FPM-5191G-X0AE
 - 19" touchscreen HD LCD monitor
- Monetary constraints

Concept 1: PC-104

Utilizes a PC-104 board and the CPU.

Concept 2: Signal Conditioner and PC-104

Utilizes a PC-104 board in conjunction with a signal conditioning module (SC).

Concept 3: Signal Conditioner to PLC

Uses only a signal conditioning module in conjunction with the PLC and CPU.

Concept 4: SC to Switch

CPU communicates with SC and Koyo simultaneously.

LVDT Signal Conditioner

MODEL	COST	QTY	SIMPLICITY (MAX = 100)	TOTAL COST
AnyNET I/O ANR2	\$895/\$815	2	98	\$1710
LVC-4000 Series AC	\$521	3	70	\$1563
MMx-1000 Series AC	\$350	3	65	\$1050

Ethernet Switch

Ethernet Switch	Cost	# of Ports	Speed [Mbps]	Power Consumption [W]	MTBF [hrs.]
N-T1005TX	\$288.00	5	10/100/1000	36	2,000,000
EISK5-GT	\$148.00	5	10/100/1000	3	N/A
IES5100	\$77.24	5	10/100	2.4	1,677,807

Power Supply

Power Supply	Cost	Output Voltage [VDC]	Output Power [W]	Housing	MTBF [hrs.]
PSB24-060-P	\$28.00	24	60	Plastic	>800,000
PS24-050-D	\$99.00	24	50	Metal	2,992,000
1769-PA4	N/A	24	48	Metal	N/A

Spring Schedule

- January
 - Remove old electrical components from the machine
 - Install new components
- February / March
 - Program and test all components.
- April
 - Debug

Conclusion

- Mechanical aspects meet Koyo Bearing's standards
- Update the electronic components of an Automated Bearing Bore Gage
- In the process of choosing an electrical layout
 - LVDT, SC, PC-104, PLC, Proximity Switch, Pneumatic Actuators, Switch, CPU, GUI

Questions and Comments

References http://eng.fsu.edu/me/senior_design/2014/team22/

