

Senior Design Project Automated High Volume Bearing Bore Gage

Concept Design Review

Team 22

Seth Norman - Project Manager (EE Lead) Eric Allgeier - Webmaster Kevin Flemming - Treasurer

Team Sponsor Robert Potts (KOYO Bearings)

Team Advisor Dr. Cartes

Matthew Boler – *ME Lead* Christopher Proffett - Sponsor Liaison

Instructors Dr. Shih Dr. Franks

Dr. Amin

Agenda

Project Objectives Fall Schedule Design Selection Component Details/CAD Drawings Hardware/Software Manufacturing Safety Bill of Materials Spring Schedule Conclusion

Automated Bearing Bore Gage

- Measures bore sizes
- Determines pass or fail

Problem Statement

- Update the automated bearing bore gage
- Maintain measuring quality and sampling rate
- Allow for networking with Koyo

Objectives

- New GUI
- Replace electrical components
- Keep existing pneumatic system and PLC

Fall Schedule

<u>August</u>

- 1. Organize Team
- 2. Contact Sponsor
- September
- 3. Initial Research
- 4. Diagnostic Testing
- October
- 5. Design Concepts
- 6. Component Research

- 7. Design/Component Selection
- 8. Generate Bill of Materials

<u>December</u>

9. Submit design proposal to Koyo

Bearings

- 10. Order all parts needed for the design
- 11. Create project objectives for Spring

Semester

Design Concept

Uses only a signal conditioning module in conjunction with the PLC and CPU.

LVDT AC Signal Conditioner

AMCC ANACCA ANAC

- The LVDT will be excited with 4V at 4 kHz.
- Receive size through a differential voltage.
- Export the data through the Ethernet port to the PLC and CPU.

- CTRLink Ethernet Router
- 4 Port 10/100 Mbps LAN Switch.
- 1 Port 10/100 Mbps WAN
- Uses Ethernet to link and network all devices to KOYO Plant

PSZ409 PSZ40

24 VDC Power Supply

• 24VDC Power Supply used to power the LVDT signal conditioner and the router.

12 VDC Power Supply

• 12 VDC Power Supply used to power the monitor

CPU – Lenovo ThinkCentre M92p

- The CPU will used to collect data from the SC.
- From this data, a histogram will be developed for the plant operator and machine operator convenience.
- CPU will be used to interface between the touch screen monitor and the SC.
- CPU will be used to calibrate the SC for the maximum and minimum bearing size.
- Windows 8 operating system for ease of touch screen

PLC and Software

- SLC 500 gives us Ethernet capability .
- Rugged industrial standard
- Program software will be RSlogix500
- 16 node, 120 VAC discrete input.
- 8 node, 120 VAC discrete output.

Allen-Bradley SLC 500

Touch Screen

ELO 1537L 15" LCD

- Connects to the CPU via USB and VGI
- Ease of operation through touch screen

Touch Screen

Kevin Flemming 13

Housing Cabinet

Component Layout

	Part
А	Square D, 10 A single pole breaker
В	12VDC 60W Power Supply
С	24VDC 60W Power Supply
D	ThinkCentre M92p, CPU
Е	ANR2 LVDT Signal Conditioner
F	10/100 Ethernet Router

Electrical Schematic

Electrical Schematic

Electrical Schematic

Hardware / Software

<u>Materials</u>

- 16 gage wire
- 3/16-24 machine screws
- Wire terminal crimps
- Heat shrink
- Printable wire labels
- Wire Ties
- Din rail (35mm)
- Din rail mounted two screw terminals

Programming Software

- RSLogix 500 for the PLC ladder logic
 - programming
- Quincy (Open Source) for GUI development

Manufacturing Recommendations

- Setup test bed for new components
- Code equipment
- Remove old wiring and subsystems
- Insert new mounting devices
- Insert electrical components
- Run and land wires
- Final testing

Safety

- All work to be done on this machine will follow a strict LOTO (Lock out tag out) on all sources of potential energy.
- All potential electrical hazards are contained in the two housing on the machine.
- Both housing have locking mechanisms to keep untrained personnel away from any unnecessary hazards.

Bill of Materials

Device	Part Number	Unit Price (\$)	Quantity	Price (\$)
CPU	LENOVO ThinkCentre M92p	*	1	*
PLC - Chassis	1746-A4	*	1	*
PLC – CPU/Ethernet Module	1746	*	1	*
PLC – Input Module AC	1746-IA16	*	1	*
PLC – Output Module DC	1746-OA16	*	1	*
PLC - Software	RSLogix 500	2050.00	1	2050.00
Signal Conditioner	ANR2	895.00	2	1790.00
Power Supply 24V	PSB24-060-P	28.00	1	28.00
Power Supply 12V	PSB12-060	37.25	1	37.25
Router	CTR-Link EIPR-E	299.00	1	299.00
Monitor	ELO 1537L	527.00	1	527.00
Circuit Breakers	QUO110	30.65	1	30.65
Misc. (DIN Rail)	TBD	TBD	TBD	~100.00
Total			11	\$4861.90

OF ENGI

* Provided by KOYO

Spring Schedule

<u>January</u>

- 1. Remove old electrical components from the machine
- 2. Install new components
- February / March
- 3. Program and test all components.
- <u>April</u>
- 4. Debug

Conclusion

- Mechanical aspects meet Koyo Bearing's standards
- Update the electronic components of an Automated Bearing Bore Gage
- Getting final approval of bill of materials from Koyo to order parts
- Assembling the parts and setting up the internal network

Questions and Comments

References http://eng.fsu.edu/me/senior_design/2014/team22/

