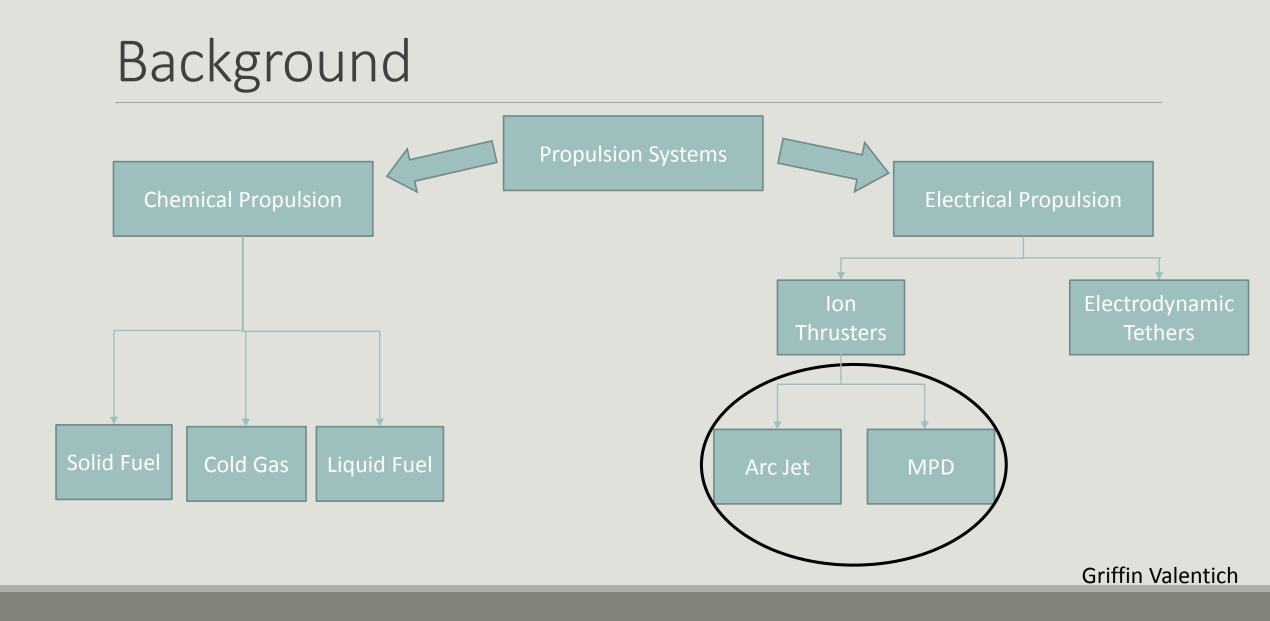
#20 - Direct Drive Solar Powered Arcjet Thruster

SPONSOR - NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE AL

ADVISORS - DR. GUO, DR. KWAN, DR. ANDREI

SENIOR DESIGN COORDINATORS - DR. AMIN, DR. FRANK


Chris Brolin - ME Cory Gainus - ME Gerard Melanson - ECE Tara Newton - ME Griffin Valentich - ME Shane Warner - ECE

Team Members

Griffin Valentich

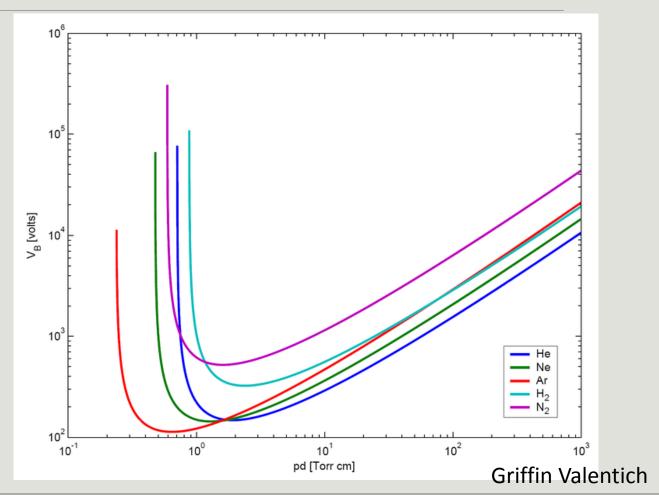
Agenda

- Background
- Sponsor Requirements/Objectives
- Final Design
 - Mechanical
 - Electrical
- Potential Challenges / Safety
- Procurement
- Future Plans for Spring 2014

Background

- Electrical Propulsion Systems
 - High specific impulse low thrust
 - Electro-thermal thruster- arcjet
 - Produce thrust by heating gas propellant (Ar) and expelling through C-D Nozzle
 - Electromagnetic thruster MPD
 - Accelerates particles with applied magnetic force
- Purpose of Electric Propulsion Systems
 - Station keeping lower overall lifetime costs
 - Satellite altitude and attitude adjustment
- Power Processing Unit (PPU)
 - Expensive and complex
 - Largest prohibitive component to electronic propulsion systems
 - Converts input power to correct current and voltage

Paschen's Law


 Relates the product of pressure and distance between anode and cathode to the voltage necessary to initiate breakdown

$$V_{Breakdown} = f(P * d)$$

• Argon had lowest breakdown voltage

 $\sim 137 V$

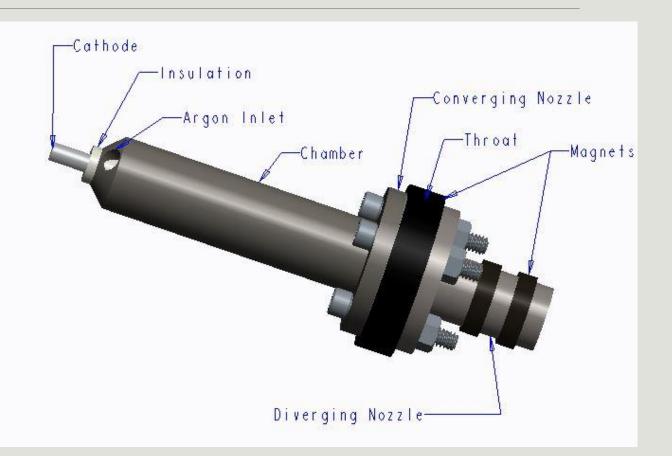
• Good starting point, but values will be different due to complex geometry

Sponsor Requirements / Objectives

•Eliminate the PPU

- Enable thruster to operate in Direct-Drive Mode
- Obtain power directly from solar panels

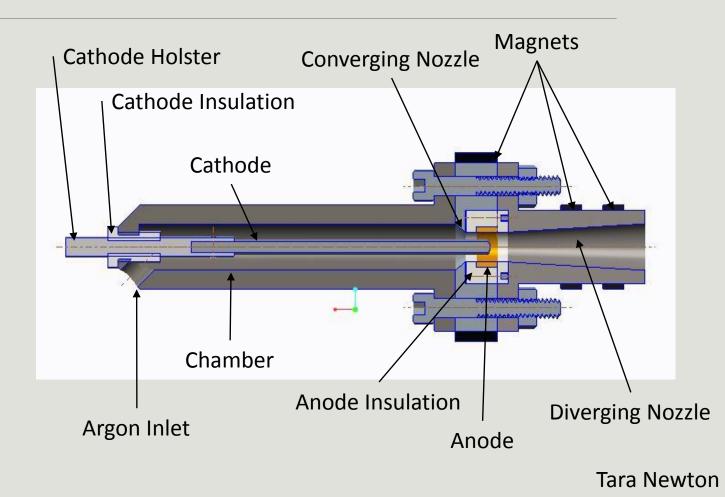
•Design, manufacture, and test an arcjet thruster


- Utilize permanent magnets to confine high temperature plasma
- Independently control propellant flow
- Design mounting apparatus for thruster inside vacuum chamber
- Measure thrust produced

•Quantify the range of operating conditions over which thruster is effective at operating continuously

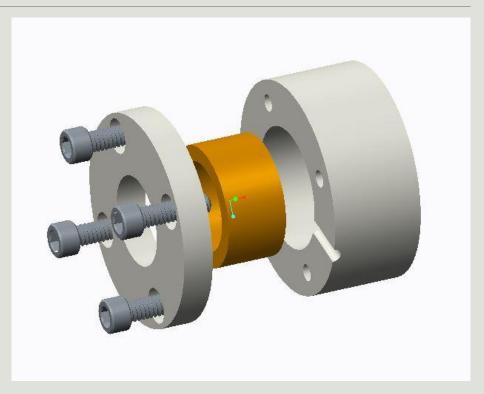
Thruster Design

Characteristics


- 3 part nozzle construction
 - Easier machinability
 - Designed for Mach 2 A/A* = 1.531
- Magnets evenly spaced over nozzle
 - Strongest field at throat of nozzle to protect nozzle walls
- Stagnation Pressure 550 Pa
- Static Pressure at throat 267 Pa
 - Pressures from Bernoulli's Eq with const. mass flow rate
- Anode/Cathode Spacing 0.15"
- Product of pressure and distance gives breakdown voltage of 137 V
 - well within circuit's capabilities

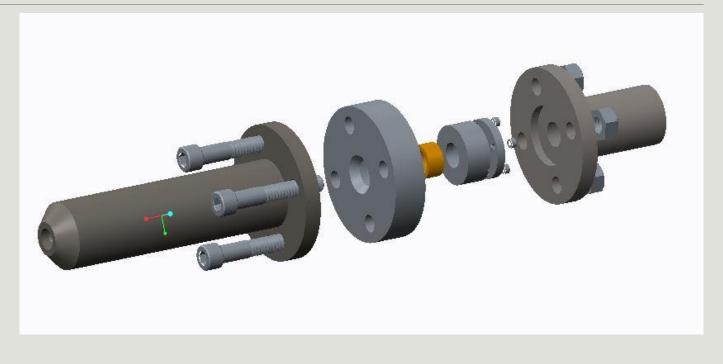
Thruster Design

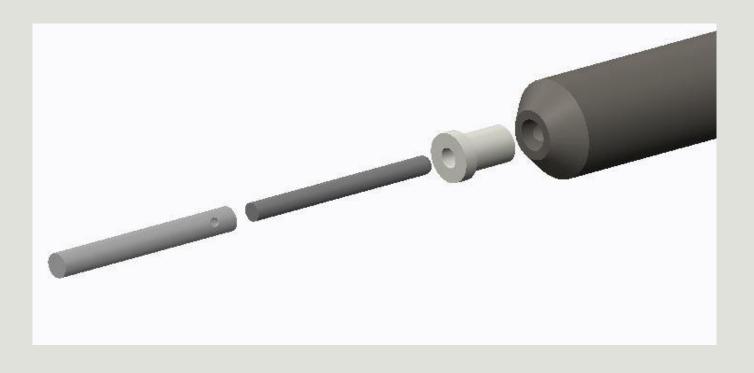
Characteristics


- 3 part nozzle construction
 - Easier machinability
 - Designed for Mach 2 A/A* = 1.531
- Magnets evenly spaced over nozzle
 - Strongest field at throat of nozzle to protect nozzle walls
- Stagnation Pressure 550 Pa
- Static Pressure at throat 267 Pa
 - Pressures from Bernoulli's Eq with const. mass flow rate
- Anode/Cathode Spacing 0.15"
- Product of pressure and distance gives breakdown voltage of 137 V
 - well within circuit's capabilities

Machining Considerations

•Anode Assembly


• Allows anode to be insulated yet easily accessible


Machining Considerations

•Nozzle Construction

Three main components
Converging
Throat
Diverging

Machining Considerations

•Cathode Placement

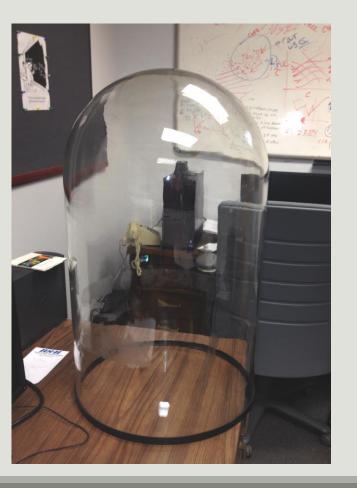
Adjustable using threads
Change d on the P*d axis of Paschen's curve

•Cathode Holster

•Avoid machining tungsten

Tara Newton

Material Selection


Component	Material	Rational
Cathode	Tungsten	High melting point
Anode	Type 303 Stainless Steel	Easy to machine, good temp resistance
Fuel Supply	Argon Gas	Readily available
Chamber	Type 303 Stainless Steel	Easy to machine, good temp resistance
Insulation	Macor (Glass Ceramic)	Machinable Ceramic Insulation
Nozzle	Type 303 Stainless Steel	Easy to machine, good temp resistance
Vacuum Chamber	Glass Bell Jar	Large Volume/ transparent / budget constraints

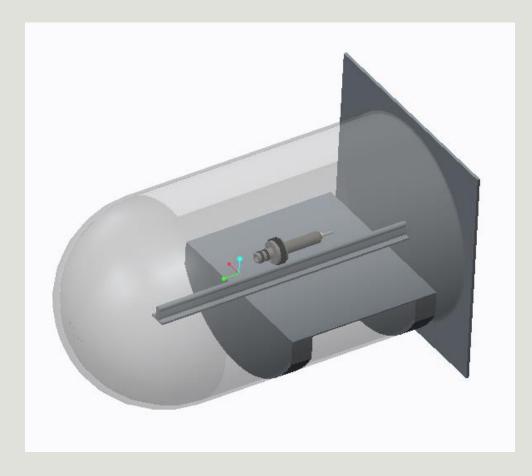
Tara Newton

Testing Apparatus

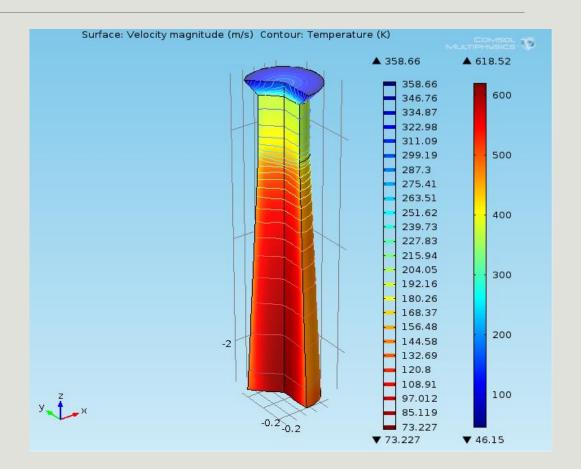
Vacuum Chamber

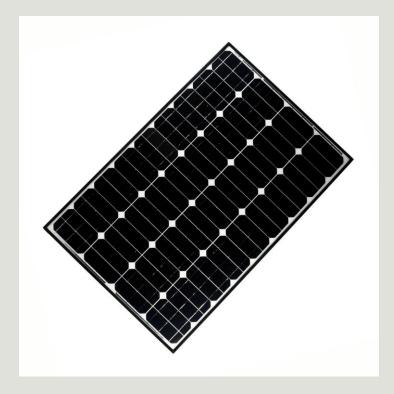
- Bell Jar
- Borrowed from Dr. Weatherspoon
- Chamber will be evacuated to 0.5 torr
- Argon and electrical connection input through baseplate

Vacuum Pump

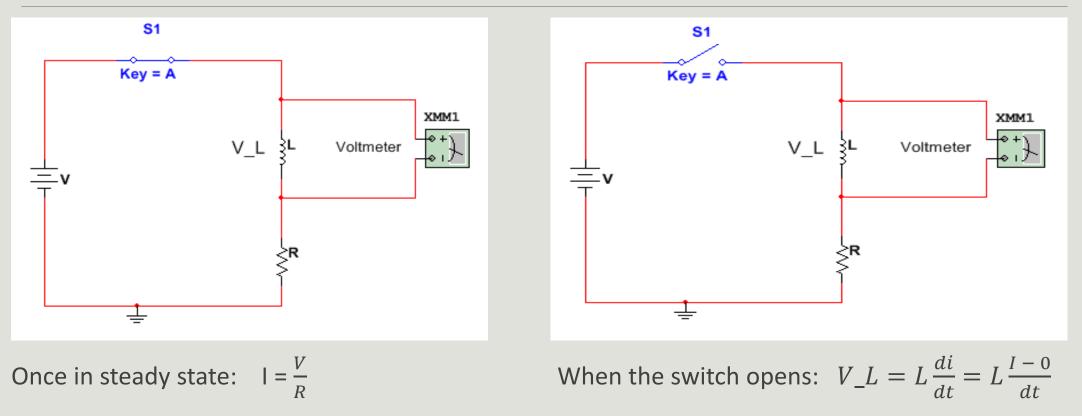

- Borrowed from Dr. Weatherspoon
- Dekker RVL020H
- Vacuum to 0.5 torr
 - Pb = 66 Pa

Experimental Setup


- Force measured with spring and sliding track
 - Max expected force 1 N
 - Spring Constant 0.44 lb/in
 - Max deflection 1.85 in

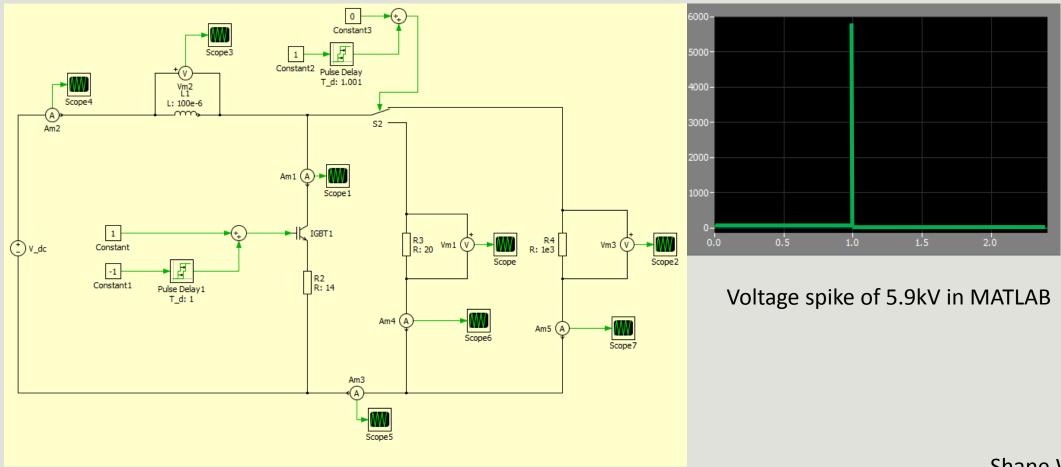

Analytical Model

- •Comsol Simulation of the Converging-Diverging Model
 - Simulation run utilizing calculated static and stagnation pressures
 - Gives a exit Mach number of approx. 1.7
 - Nozzle designed for a Mach number of 2
- •Simulation not perfect
 - Temperature gradient difficult to model
 - Need to add magnetic field to nozzle

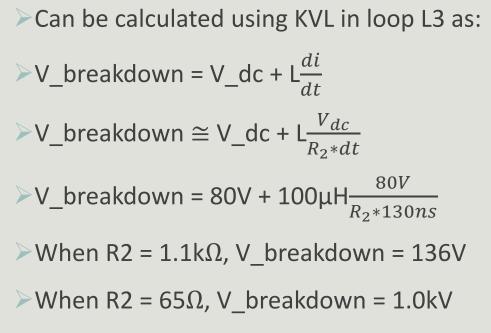

Electrical Goal #1 – Circuit Design

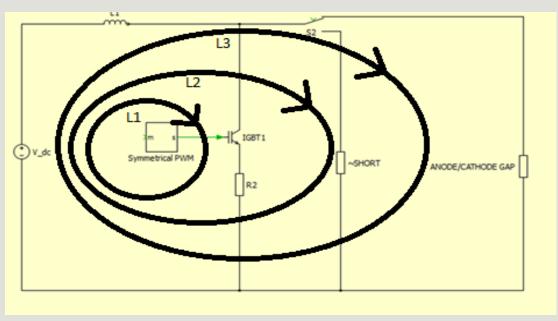
- Input 4 Aleko 100 W Solar Panels
- Act as approximately 80V Source
- Can sustain approximately 5.5 A
- Produce correct voltage spike with 40V source

Aleko 100 W Solar Panel



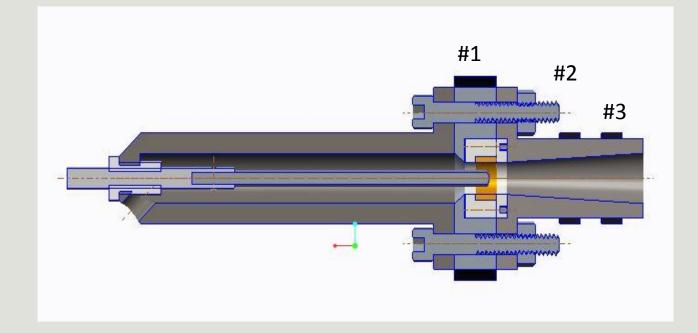
Final Circuit Design


	· · · · · · · · · · · · · · · · ·	L	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Voltage source ~80 V	from solar panels ~5.5 A(max)	· · · · · · · · · · · · · ·		· · · · · · · · · · · · ·	Acts as switch
	 	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		ЮВТ
Pulse	1BH62	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Thruster \$
<u>, (000/1s1s</u>			· · · · · · ·		Resistan <mark>c</mark> e of
Selector switch	· · · · · · · · · · · · · · · · ·		Zener	· · · · · · · · · · · · · ·	
Selector switch		C Capacitor an			plasma
Selector switch		Capacitor an Zener diode switch			Plasma


Circuit Simulation using MATLAB


```
Circuit Analysis
```

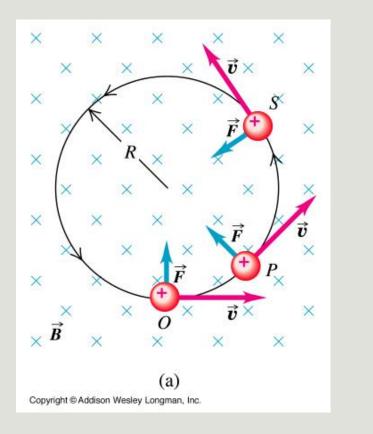
> The magnitude of the voltage spike is incorrect.

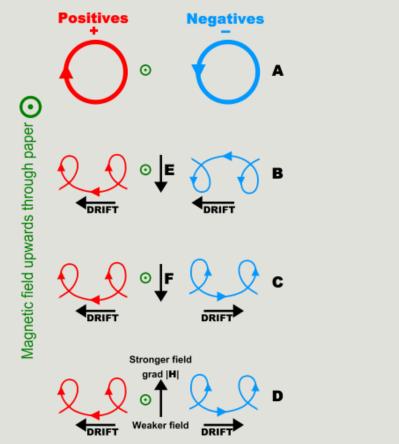


> At a voltage of V_dc = 40V => When R2 = 32Ω , V_breakdown = 1kV

Component Values	Output Range
L = 100 uH	<u>At 80 V</u>
R = 15 to 400 Ω	Vmax = 4230 V
di = 0.2 to 5.5 A	Vmin = 154 V
dt = 130 ns (max)	<u>At 40 V</u>
	Vmax = 2115V

Vmin = 77 V


Electrical Goal #2 – Magnet Design

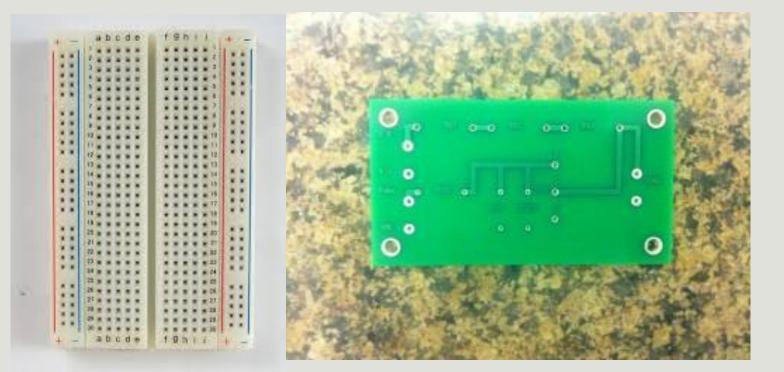


Magnet 1 at r = 3.81 mmMagnet 2 at r = 5.82 mmMagnet 3 at r = 6.63 mm

Gerard Melanson

Charges in Magnetic Field

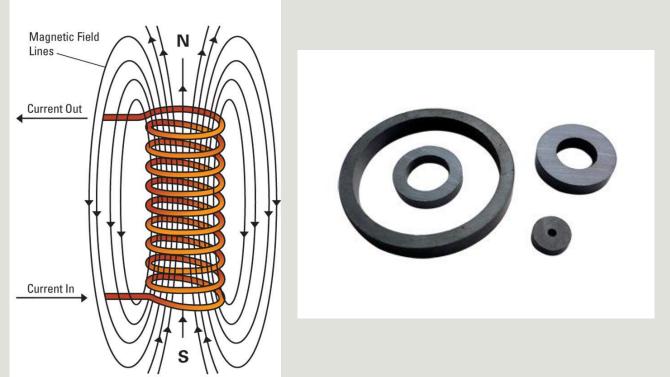
Gerard Melanson


The magnetic field is given by $B = \frac{mv}{qr}$, $v = \sqrt{\frac{20eV}{3m}}$, where m is mass, v is velocity, q is charge, r is radius, eV is an electron-voltage, and B is the magnetic field. These equations simplify to give us

$$B = \frac{3}{r} mT$$

Magnet at P1	Magnet at P2	Magnet at P3
0.787 T	0.515 T	0.452 T

Circuit Testing and Finalization


We plan to use a breadboard (left) for testing, and a printed circuit board (right) for the final design

Magnet Testing and Finalization

Electromagnets (Left) will be used in initial testing since it is easy to change their strength

Final Design will feature permanent magnets (Right)

Gerard Melanson

Potential Challenges/ Safety

Safety

- •High voltages/currents
- •High temperatures
- •Ar gas asphyxiant

Challenges

- •Lots of assumptions
 - More modeling needed
- •Multiple tests needed
- •Accurately measure displacement of spring to calc. thrust

Procurement

Component	Description	Quantity	Со	<u>st</u>	Manufacturer
Cathode	Tungsten Rod, 3/16" x 6" P#8788A153	2	\$	33.24	McMaster Carr
Cathoac	Stainless Steel 303, 3/16" x 6' P#8984K93	1	\$	7.77	McMaster Carr
Anode	SS Steel Tube 1/2 OD, 0.37 ID 3' P# 9220K461	1	\$	8.79	McMaster Carr
Argon Gas Cylinder	20 CF, Welding Cylinder	1	\$	77.00	Welding Supplies from IOC
Argon Gas	20 CF Fill	1	TB	D	TBD
Hose from Arcjet to Baseplate	Air and Water Hose 1' P#5304K9	1	\$	13.97	McMaster Carr
Hose Fitting to Arcjet	ARO-Shape Hose Coupling P#343K74	1	\$	12.90	McMaster Carr
Fitting to Arcjet Fitting	Industiral Shape Hose Coupling P#6534K72	1	\$	4.21	McMaster Carr
Hose Fitting to Baseplate	Through-Wall Coupling P#50785K274	1	\$	11.23	McMaster Carr
Hose Fitting from Baseplate Fitting	Female Barbed Hose Fitting P# 5346K72	1	\$	9.20	McMaster Carr
Hose	1" x 5' Hose P#5304K45	1	\$	12.65	McMaster Carr
Housing/Nozzle	Stainless Steel 303, 2' Diameter, Stock P#8984K573	1	\$	79.64	McMaster Carr

Procurement Cont.

Gasket	All Purpose Sheet Gasket 6"x6" P#9470K26	2	\$ 6.02	McMaster Carr
Bolts (Anode)	P# 92185A078	1	\$ 3.23	McMaster Carr
Mating Bolts	P# 92185A546	1	\$ 5.43	McMaster Carr
Nuts for Mating Bolts	P# 91845A029	1	\$ 4.57	McMaster Carr
Insulation	Macor Rod P#8489K81	1	\$ 72.95	McMaster Carr
IGBT	Part# IRG7PH30K10DPBF	1	\$ 8.73	Digi-Key
Inductor	100.0 μH <i>,</i> 6 A PART#1410460C	1	\$ 2.62	Digi-Key
Switch	PART# C3900BA	2	\$ 8.92	Digi-Key
Potentiometer	Part# AVT20020E200R0KE	2	\$ 31.24	Digi-Key
Magnet	Ceramic Ring Magnet, ID 2"	3	\$ 11.25	American Science & Surplus
				The D. R. Templeman
Spring	Extension Spring #EBD-012-672-S	2	\$ 7.50	Company
		TOTAL	\$ 433.06	

Future Plans – Spring 2014

•Submit purchase order – this week

•Submit drawings to machine shop

•Test voltage spike of circuit

•Measure resistance of plasma

• Determine whether to insert additional resistor or transconductance amplifier

•Design mounting and thrust measurement apparatus

•Create test plan

Questions?