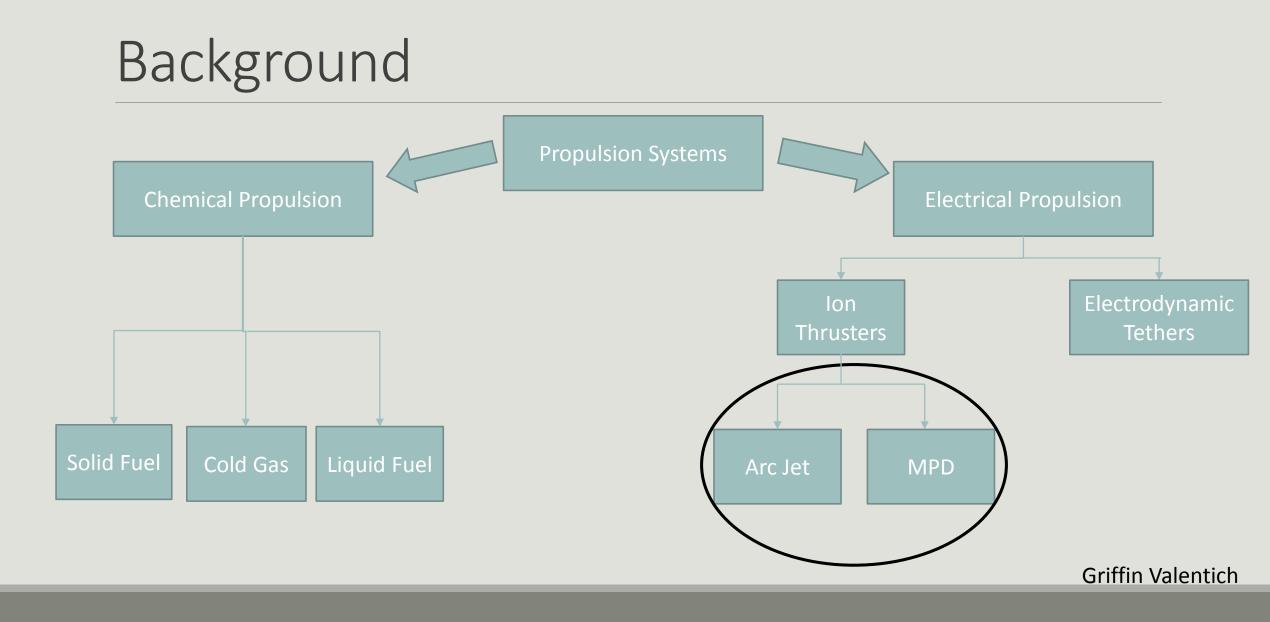
#20 - Direct Drive Solar Powered Arcjet Thruster

SPONSOR - NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE AL

ADVISORS - DR. GUO, DR. KWAN, DR. ANDREI

SENIOR DESIGN COORDINATORS - DR. AMIN, DR. FRANK


Chris Brolin - ME Cory Gainus - ME Gerard Melanson - ECE Tara Newton - ME Griffin Valentich - ME Shane Warner - ECE

Team Members

Griffin Valentich

Agenda

- Background
- Sponsor Requirements/Objectives
- Final Design
 - Mechanical
 - Electrical
- Testing Overview
- Procurement
- Future Plans
- Gantt Chart

Background

- Electrical Propulsion Systems
 - High specific impulse low thrust
 - Electro-thermal thruster- arcjet
 - Produce thrust by heating gas propellant (Ar) and expelling through C-D Nozzle
 - Electromagnetic thruster MPD
 - Accelerates particles with applied magnetic force
- Purpose of Electric Propulsion Systems
 - Station keeping lower overall lifetime costs
 - Satellite altitude and attitude adjustment
 - Potential for deep space applications
- Power Processing Unit (PPU)
 - Expensive and complex
 - Largest prohibitive component to electronic propulsion systems
 - Converts input power to correct current and voltage

Sponsor Requirements / Objectives

•Eliminate the PPU

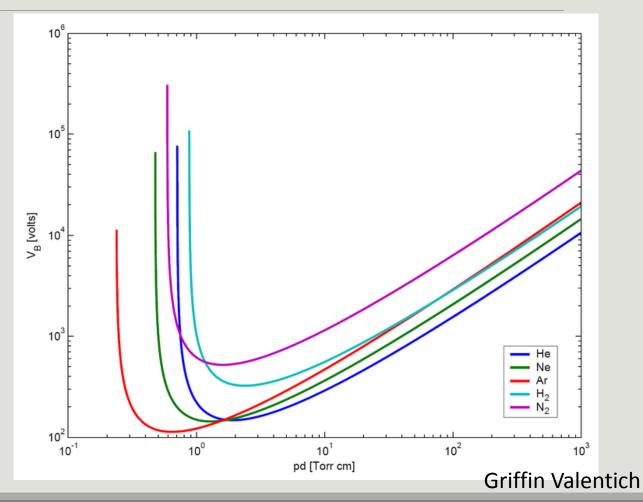
- Enable thruster to operate in Direct-Drive Mode
- Obtain power directly from solar panels

•Design, manufacture, and test an arcjet thruster

- Utilize permanent magnets to confine focus ion stream to increase thrust
- Independently control propellant flow
- Design mounting apparatus and a workable vacuum chamber
- Measure thrust produced

•Quantify the range of operating conditions over which thruster is effective at operating continuously

Paschen's Law


 Relates the product of pressure and distance between anode and cathode to the voltage necessary to initiate breakdown

$$V_{Breakdown} = f(P * d)$$

• Argon had lowest breakdown voltage

 $\sim 137 V$


• Good starting point, but values will be different due to complex geometry

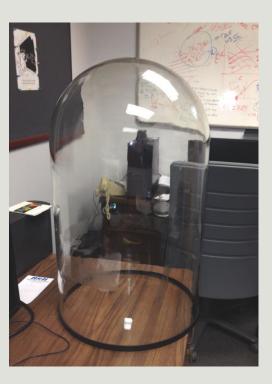
Final Thruster Design

Characteristics

- 3 part nozzle construction
 - Easier machinability
 - Designed for Mach 2.65 A/A* = 3.15
- Magnet placed at throat of nozzle to protect nozzle walls
- Stagnation Pressure 550 Pa
- Static Pressure at throat 267 Pa
 - Pressures from Bernoulli's Eq with const. mass flow rate
 - $P/P_0 = 0.4867$, at throat M = 1
- Anode/Cathode Spacing 0.15"
- Product of pressure and distance gives breakdown voltage of 137 V
 - Well within circuit's capabilities

Cory Gainus

Testing Apparatus

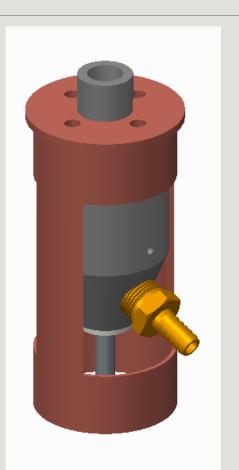

Vacuum Pump

- Welch 1400
- Vacuum to 1x10⁻⁴ Torr

Vacuum Chamber

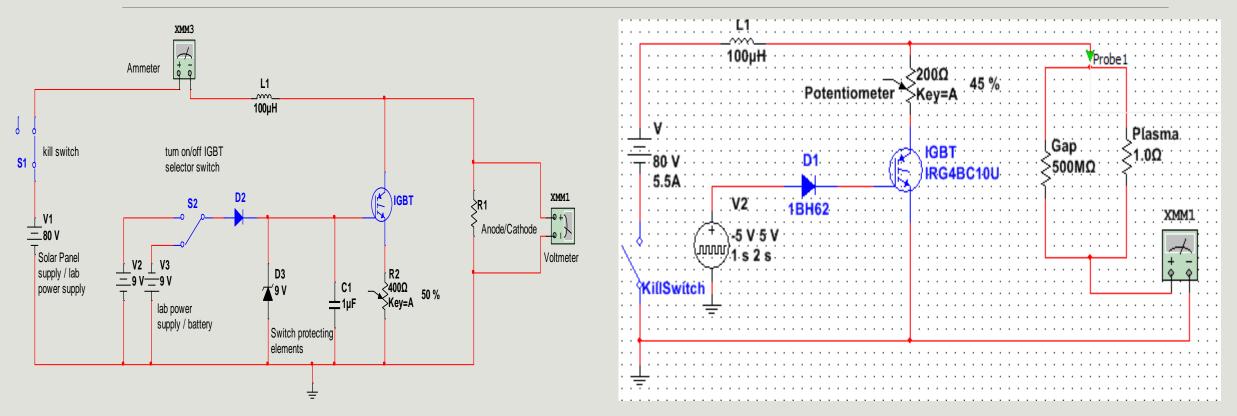

- Bell Jar
- Borrowed from Dr. Weatherspoon
- Chamber will be evacuated to 1x10⁻⁴ Torr

Baseplate

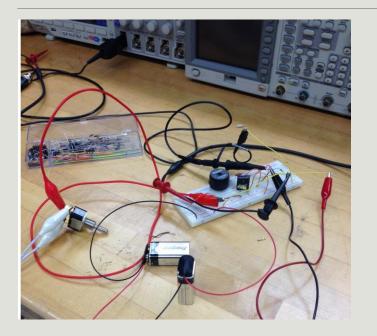

- Borrowed from Dr. Weatherspoon
- Argon and electrical connection input through baseplate

Test Stand

- •Standard Pipe with cap
 - Separate Pieces
- •Easy to machine
- •Easily attached to thruster and detached for any required adjustments
- •Lightweight
- Easy to access argon and pressure ports
- •Adaptable for whatever force measurement equipment is used

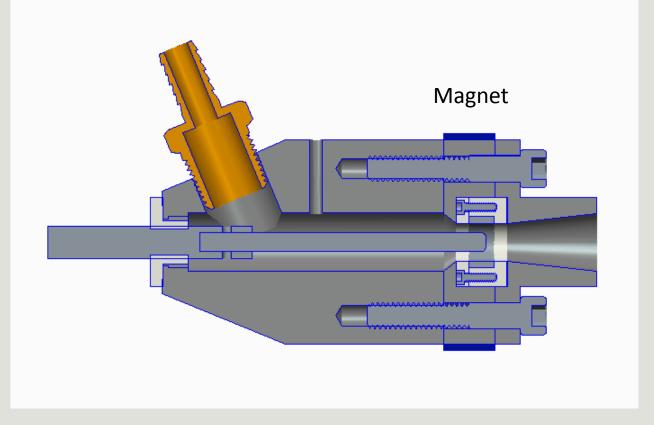

Cory Gainus

Final Testing Set Up


- Square steel tubing reinforced baseplate
- Pipes welded for
 - Vacuum hose
 - Vacuum gauge
 - Argon inlet
- Wires throughput with stycast epoxy
 - Supplied by Dr. Guo
- Edges of chamber sealed with vacuum grease

Testing and Results

Full Circuit Testing


Approximately 150 V spike at Vsource = 20 V and Rtop = 50 ohm

Theoretical max spike

2 kV

Final Magnet Design

 $B = \mu_r \mu_0 \frac{N}{L} I$ B = Magnetic field strength μ_r = relative permeability μ_0 = free space permeability N = number of turns L = Length of electromagnet I = Current

Maximum Magnetic Field

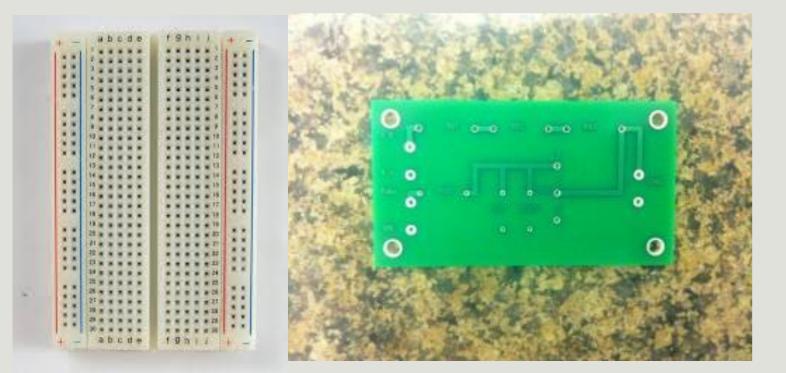
The desired magnetic field is given by $B = \frac{mv}{qr}$, $v = \sqrt{\frac{20eV}{3m}}$, where m is mass, v is velocity, q is charge, r is radius, eV is an electron-voltage, and B is the magnetic field. These equations simplify to give us


$$B = 0.316 T$$

Now the current and number of turns we need is given by:

$$NI = \frac{LB}{\mu_r \mu_0} = 4790 \ (A - turns)$$

Magnet Design


Max Current = 5 A Length = 0.01905 m Diameter of 22 gauge wire =0.0017 m Number of loops per layer = 11 Absolute max field = 0.316 T = 4790 A-turns Typical ideal field = 0.050 T = 758 A- turns At least 14 layers needed Coat with layer of insulation between wire layers Fig. 1 Dimensions of a multi-layer coil of rectangular cross section

Gerard Melanson

Circuit Testing and Finalization

 We are currently designing the PCB on Eagle now that the design has been finalized

Procurement

Through baseplate hardware

Component	Part #	Quantity	Cost
Threaded Pipe Nipple	44615K462	2	\$3.24
Vacuum Hose Fitting 90 deg	5346K125	1	\$10.20
Coupling for Vacuum Gauge	4429K111	1	\$5.70
		Total	\$19.14

- Remaining hose fitting and poly flow hose will be supplied by sponsor
- Remaining Budget \$130.74

Griffin Valentich

Future Plans

•Machining baseplate

- Mounting apparatus completed
- Weld tubes and attach appropriate fittings

•Test vacuum chamber and leak proof connections and through holes

- •Measure resistance of plasma
 - Determine whether to insert additional resistor or transconductance amplifier
- •Determine thrust output and range of operating conditions

•Acquire Printed Circuit Board

Gantt Chart

Gantt Chart																	
Project - Solar Powered Arc Jet Thruster Team	20	Today		1/16/2014													
Sponsor - NASA			- All Team Memb	ers													
Advisors			Mechanical														
Wei Guo			Electrical														
Petru Andrei																	
Kwan																	
	1/6 - 1/12	1/13 - 1/19	1/20 - 1/26	1/27 - 2/2	2/3 - 2/9	2/10 - 2/16	2/17 - 2/23	2/24 - 3/2	3/3 - 3/9	3/10 - 3/16	3/17 - 3/23	3/24 - 3/30	3/31 - 4/6	4/7 - 4/13	4/14 - 4/20	4/21 - 4/27	4/28 - 5/2
Activity																	
Webpage Design & Maintenance																	
Electrical																	
Build Prototype Cicuit																	
Test Circuit																	
Design PCB Board																	
Magnet Implemtation																	
Mechanical																	
Send Drawings to Shop																	
Test Fit Parts																	
Order testing equipment																	
Design Test Apparatus																	
Ensure Vacuum Pump Operation																	
Mock up Experimental Setup																	
Develop Overall Test Plan																	
Test and Troubleshoot																	
Analyze / Collect Data																	
Prepare Final Report																	

Questions?