#20 - Direct Drive Solar Powered Arcjet Thruster

SPONSOR - NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE AL

ADVISORS - DR. GUO, DR. KWAN, DR. ANDREI

SENIOR DESIGN COORDINATORS - DR. AMIN, DR. FRANK

Chris Brolin - ME Cory Gainus - ME Gerard Melanson - ECE Tara Newton - ME Griffin Valentich - ME Shane Warner - ECE

Team Members

Griffin Valentich

Abstract

• Project Scope:

- Design, fabricate, and test an electric arcjet thruster within a vacuum chamber that will be designed to simulate the space environment.
 - Operate via "direct-drive" in order to power the system.

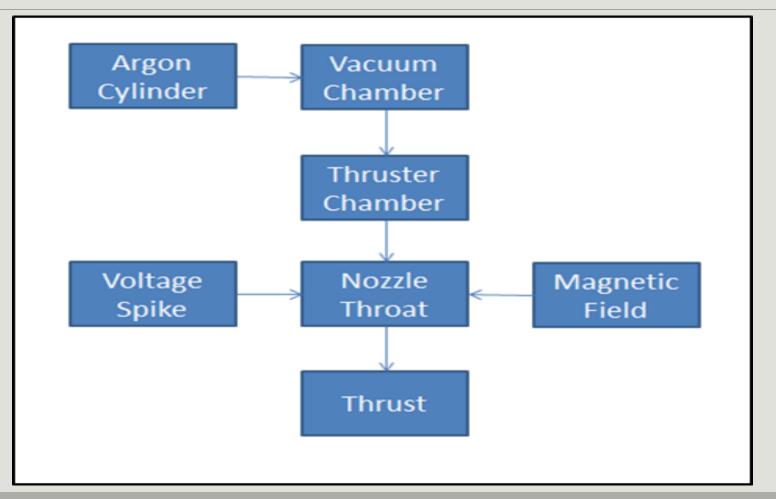
• Accomplishments:

- Thruster fabricated
- Circuit designed and tested
- Testing apparatus designed
- Vacuum chamber tested

• Future Recommendations:

- Adequate vacuum chamber needed
- Acquire measurement devices to quantify performance
- Incorporate solar panels

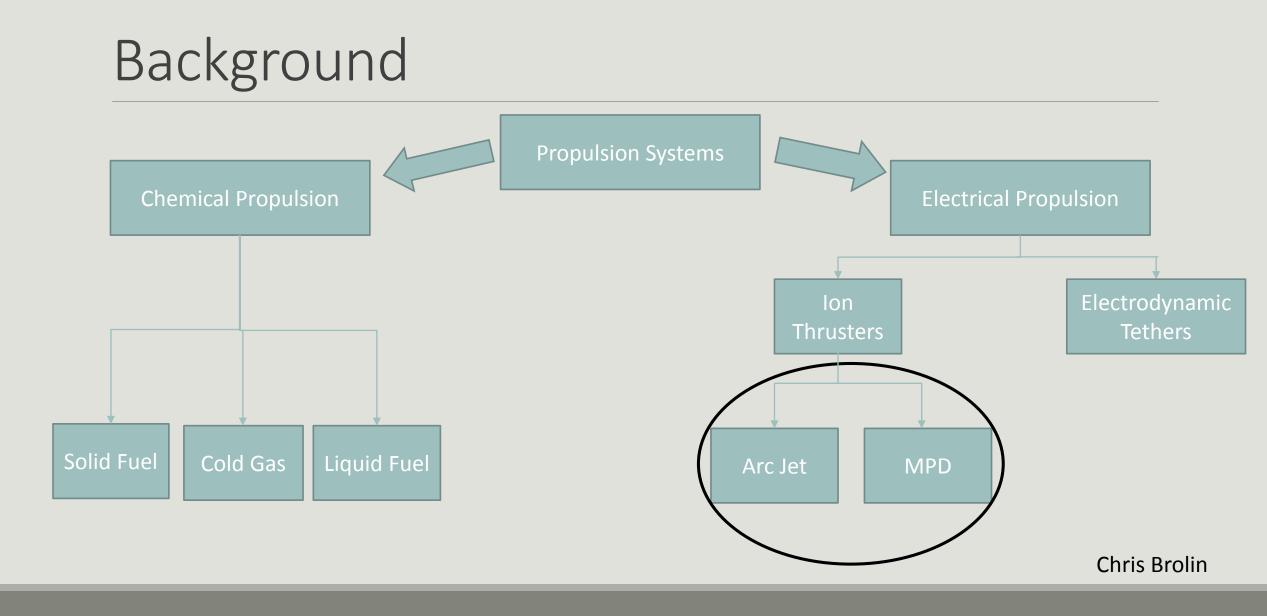
Sponsor Requirements


•Eliminate the PPU

- Generate a high-voltage pulse from a simple robust circuit
- Obtain power directly from solar panels or power supply

•Design, manufacture, and test an arcjet thruster

- Design and build a thruster capable of processing 50-400 W of power
 - Test under vacuum conditions
- Independently control propellant flow
- Design and execute a test plan to quantify the range of operating conditions where breakdown can be achieved
- Perform testing to see if a continuous discharge at these power/current levels can be sustained
 - Quantify the conditions over which this is possible

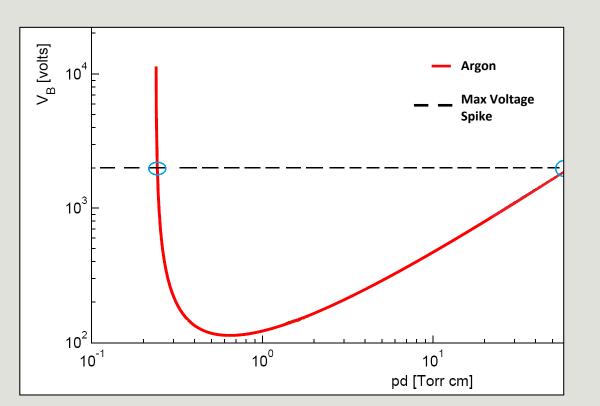

Functional Analysis

Griffin Valentich

Background

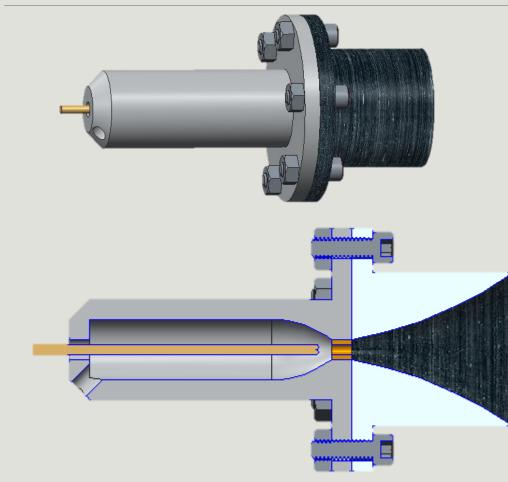
- Electrical Propulsion Systems
 - High specific impulse low thrust
 - Electro-thermal thruster- arcjet
 - Produce thrust by heating gas propellant (Ar) and expelling through C-D Nozzle
 - Electromagnetic thruster MPD
 - Accelerates particles with applied magnetic force
- Purpose of Electric Propulsion Systems
 - Station keeping lower overall lifetime costs
 - Satellite altitude and attitude adjustment
 - Potential for deep space applications
- Power Processing Unit (PPU)
 - Expensive and complex
 - Largest prohibitive component to electronic propulsion systems
 - Converts input power to correct current and voltage

Paschen's Law


 Relates the product of pressure and distance between anode and cathode to the voltage necessary to initiate breakdown

$$V_{Breakdown} = f(P * d)$$

• Argon had lowest breakdown voltage


 $\sim 137 V$

• Good starting point, but values will be different due to complex geometry

Chris Brolin

Initial Thruster Design

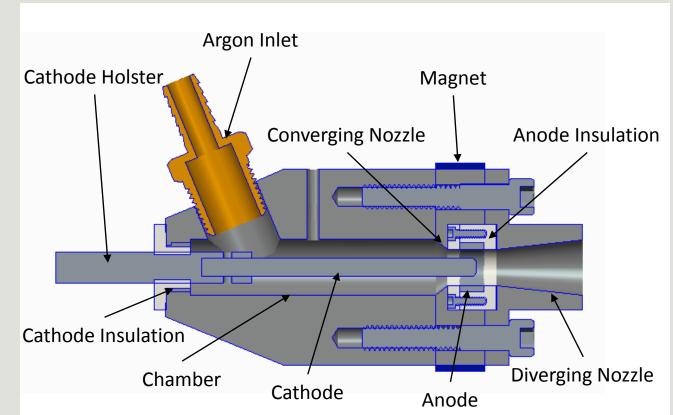
Characteristics

- Gas injected at angle
- Magnets more evenly spaced over nozzle

Pros

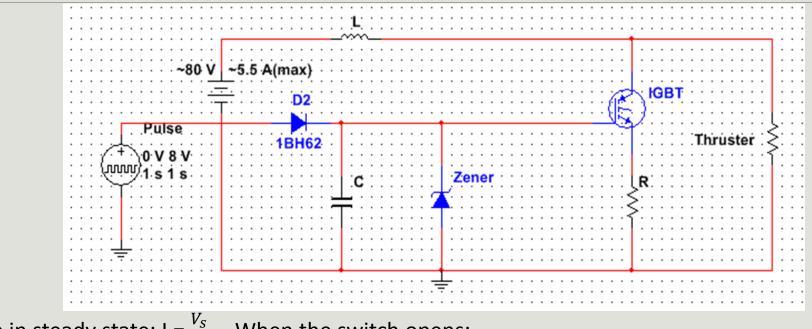
- Swirling gas helps to keep nozzle walls cool
- Metal nozzle is not part of circuit
- Magnets on diverging nozzle protect nozzle walls
- Conventional nozzle construction

Cons


- More difficult to place magnet at diverging nozzle with flange location
- Difficult to complete circuit due to anode placement

Tara Newton

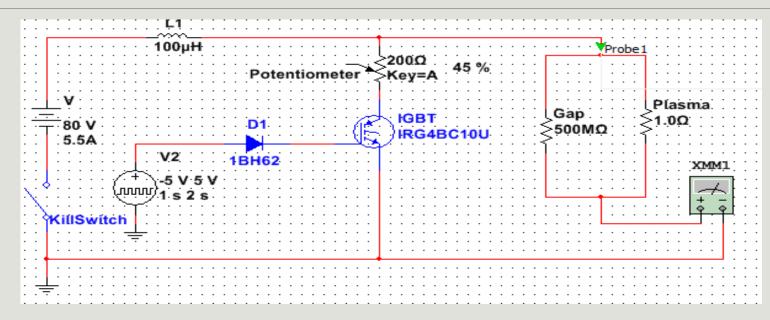
Final Thruster Design


Characteristics

- 3 part nozzle construction
 - Easier machinability
 - Designed for Mach 2.65 A/A* = 3.15
- Magnet placed at diverging nozzle to protect nozzle walls
- Stagnation Pressure 550 Pa
- Static Pressure at throat 267 Pa
 - Pressures from Bernoulli's Eq with const. mass flow rate
 - $P/P_0 = 0.4867$, at throat M = 1
- Anode/Cathode Spacing 0.15"
- Product of pressure and distance gives breakdown voltage of 137 V
 - Well within circuit's capabilities

Tara Newton

Initial Circuit Design


• Once in steady state: $I = \frac{V_s}{R}$ When the switch opens:

$$V_L = L \frac{di}{dt} = L \frac{I-0}{dt} = L \frac{V_S}{R*dt}$$
 dt = 130 ns, L = 100 uH

• Theoretically capable of achieving 4.2 kV spike

Shane Warner

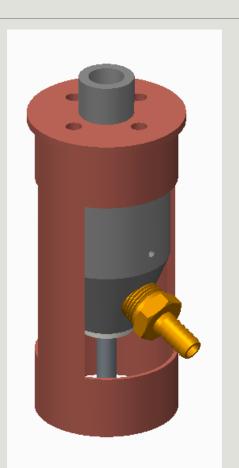
Final Circuit Design


- The concepts of the circuit are the same but slightly modified
- No need for capacitor and Zener diode in parallel

Maximum Magnetic Field

• The desired magnetic field is given by $B = \frac{mv}{qr}$, $v = \sqrt{\frac{20eV}{3m}}$, where m is mass, v is velocity, q is charge, r is radius, eV is an electron-voltage, and B is the magnetic field. These equations simplify to give us:

B = 0.316 T (calculated)

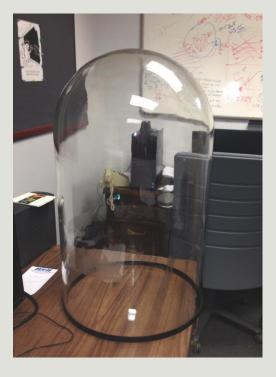

- However, our sponsor advised us that any magnetic field would help
 - A flexible permanent magnet is used and rated at: B = 0.1 T at the center

Shane Warner

Test Stand

- •Standard Pipe with cap
 - Separate Pieces
- •Easy to machine
- •Easily attached to thruster and detached for any required adjustments
- •Lightweight
- •Easy to access argon and pressure ports
- •Adaptable for whatever force measurement equipment is used

Vacuum Chamber Components


Vacuum Pump

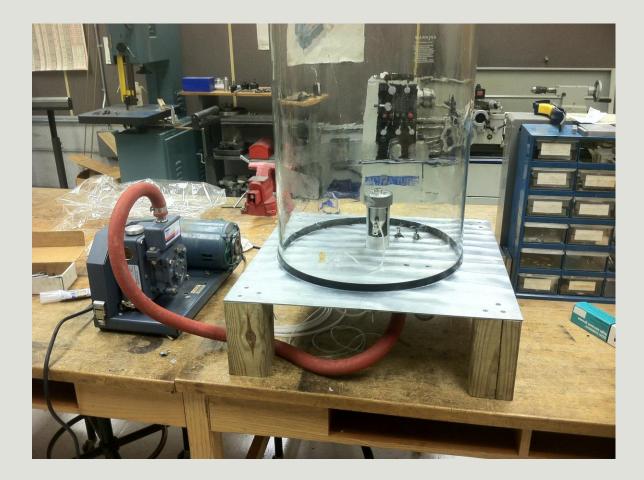
- Welch 1400
- Vacuum rated to 1x10⁻⁴ Torr

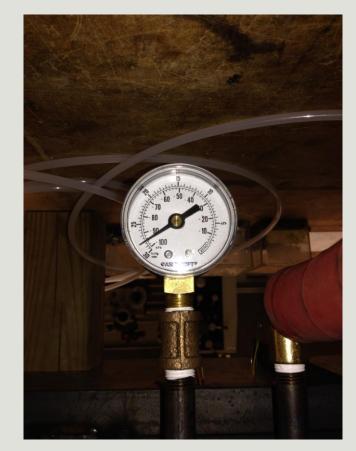
Vacuum Chamber

- Owen's Corning Bell-Jar
 - 18" x 30" x 0.5"
- Donated by Dr. Weatherspoon

Baseplate

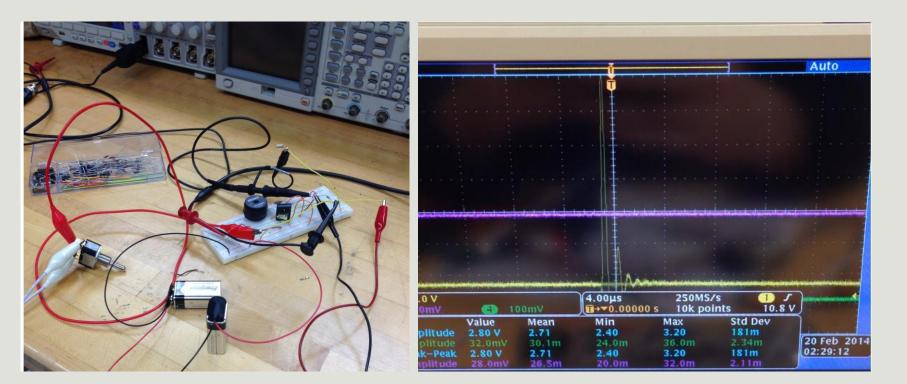
- Donated by Dr.
 Weatherspoon
- Argon and electrical connection input through baseplate
- Reinforced to withstand absolute vacuum




Final Testing Set Up

- Angled steel reinforced baseplate
- Pipes welded for
 - Vacuum hose
 - Vacuum gauge
 - Argon inlet
- Wires throughput with stycast epoxy
 - Supplied by Dr. Guo
- Edges of chamber sealed with vacuum grease

Vacuum Testing



Cory Gainus

Circuit Test and Results

- Full Circuit Testing
- Approximately 150 V spike at Vsource = 20 V and Rtop = 50 ohm
- Theoretical max spike 2 kV

Final Testing

- Vacuum pump supplied by Dr. Guo from Magnet Lab
- Attempted the ionization of Helium
 - Argon not readily available in Magnet Lab
- More accurate vacuum gauge
 - Vacuum of 300 miliTorr (approx. 40 Pa) was achieved
- No pressure transducer available
 - Difficult to know what pressure of Helium was inside thruster
- Limited power supply options
 - Limited voltage spike capabilities
- Voltage spike of approx. 400V was achieved
 - Unfortunately no ionization event occurred

Summary

•Electrical Design:

- <u>Circuit:</u>
 - Circuit designed, implemented and tested
 - Maximum voltage spike of 2 kV
- Magnet:
 - Magnetic field was calculated and implemented with flexible permanent magnet around test stand
 - Still needs testing to verify effectiveness

•Mechanical Design:

- Thruster:
 - Thruster designed, fabricated
 - Unable to test due to lack of proper measurement equipment
- Vacuum Chamber:
 - Baseplate outfitted and reinforced to be able to withstand the vacuum
 - Tested using Welch 1400 vacuum pump
 - Vacuum gauge was cheap and inaccurate
 - Vacuum pump and gauge provided by Dr. Guo achieved vacuum of 0.3 Torr (approx. 40 Pa)
- Breakdown:
 - No ionization event was achieved

Gerard Melanson

Future Recommendations - Magnet

Fia. 1

а Section across A-A

Dimensions of a multi-layer coil of rectangular cross section

- Max Current = 5 A
- Length = 0.01905 m
- Diameter of 22 gauge wire =0.0017 m
- Number of loops per layer = 11
- Absolute max field = 0.316 T = 4790 A-turns
- Typical ideal field = 0.050 T = 758 A- turns
- At least 14 layers needed
 - Coat with layer of insulation between wire layers

Gerard Melanson

Future Recommendations – Vacuum/Test

• Adequate Vacuum Chamber Needed

- Current vacuum chamber and pump were donated
- A more precise vacuum gauge is required to accurately measure vacuum.
- Make Use of High-Voltage Plasma Laboratory
 - Argon supply
 - High-voltage power supplies readily available
 - Higher rated electrical probes
 - Experience dealing with plasma generation

Future Recommendations - Measurement

- Acquire measurement devices for testing
 - Measuring thrust
 - Load Cell
 - Measuring Housing Temperature
 - Thermocouple
 - Measuring Voltage Spikes
 - Differential voltage probes
 - Chamber Pressure Measurement
 - Differential Pressure Transducer

Questions?

Thank You for Your Time!