#20 - Direct Drive Solar Powered Arcjet Thruster

SPONSOR - NASA, MARSHALL SPACE FLIGHT CENTER, HUNTSVILLE AL

ADVISORS - DR. GUO, DR. KWAN, DR. ANDREI

SENIOR DESIGN COORDINATORS - DR. AMIN, DR. FRANK

Chris Brolin - ME Cory Gainus - ME Gerard Melanson - ECE Tara Newton - ME Griffin Valentich - ME Shane Warner - ECE

Team Members

Chris Brolin

Agenda

- Background
- Objectives
- Mechanical Design
- Electrical Design
- Procurement
- Potential Challenges / Safety
- Future Plans
- Summary

Chris Brolin

Background

- Electrical Propulsion Systems
 - High specific impulse low thrust
 - Electro-thermal thruster- arcjet
 - Produce thrust by heating gas propellant (Ar) and expelling through C-D Nozzle
 - Electromagnetic thruster MPD
 - Accelerates particles with applied magnetic force
- Purpose of Electric Propulsion Systems
 - Station keeping lower overall lifetime costs
 - Satellite altitude adjustment
- Power Processing Unit (PPU)
 - Expensive and complex
 - Largest prohibitive component to electronic propulsion systems
 - Converts input power to correct current and voltage

Objectives

•Eliminate the PPU

- Enable thruster to operate in Direct-Drive Mode
- Obtain power directly from solar panels

•Design, manufacture, and test an arcjet thruster

- Utilize permanent magnets to confine plasma
- Independently control propellant flow
- Design mounting apparatus for thruster inside vacuum chamber
- Measure thrust produced

•Quantify the range of operating conditions over which thruster is effective

Thruster Design

Characteristics

- Gas injected at angle
- Annular anode insulated from rest of nozzle
- Magnets more evenly spaced over nozzle
- Nozzle designed for Mach 2
 - Area ratio = 1.531
- Stagnation pressure 550 Pa
- Static Pressure at throat 267 Pa
- Anode/Cathode Spacing 0.15"
- Easy to manufacture

Thruster Design

Characteristics

- Gas injected at angle
- Annular anode insulated from rest of nozzle
- Magnets more evenly spaced over nozzle
- Nozzle designed for Mach 2
 - Area ratio = 1.531
- Stagnation pressure 550 Pa
- Static Pressure at throat 267 Pa
- Anode/Cathode Spacing 0.15"
- Easy to manufacture

Machining Considerations

•Anode Assembly

• Allows anode to be insulated yet easily accessible

Machining Considerations

•Nozzle Construction

Three main components
Converging
Throat
Diverging

Machining Considerations

•Cathode Placement

•Cathode Holster

•Adjustable with threads

•Avoid machining tungsten

Tara N

Tara Newton

Mechanical Design

Component	Material
Cathode	Tungsten
Anode	Stainless Steel
Fuel Supply	Argon Gas
Heating Chamber	Stainless Steel
Insulation	Macor (Glass Ceramic)
Nozzle	Stainless Steel
Vacuum Chamber	Glass Bell Jar

Tara Newton

Testing Apparatus

Vacuum Chamber

- Bell Jar
- Borrowed from Dr. Weatherspoon
- Chamber will be evacuated to 0.5 torr
- Argon and electrical connection input through baseplate

Vacuum Pump

- Dekker RVL020H
- Vacuum to 0.5 torr
 - Pb = 66 Pa

Electrical Designs

2 Major Designs Needed

1.) Design a circuit that uses the four Aleko 100 W solar panels to first generate a voltage spike across the anode-cathode region high enough to achieve breakdown of the gas, and then produces a high enough current to maintain the plasma field

2.) Design a magnet configuration that focuses the positive ions in order to both increase thrust and also protect the thruster from the heat

Paschen's Law

Final Circuit Design

			•
		L	•
		mm	
Voltago courco	from colar papels		
voltage source			•
~80 V	~5.5 A(max)	Acts as switch	•
· · · · · · · · · · · · · · · · · ·			•
· · · · · · · · · · · · · · · · · · ·	— <u>D2</u>	IGBT I I I I I I I I I I I I I I I I I I I	•
Et al a a		<u> </u>	
Puise	· · · · · · · · · · · · · ·	$ \cdot $	•
	1BH62	\cdots	•
····/·································		·····	•
		Resistance o	f
Selector switch	<u>.</u>	Ľ	
	· · · · · · · · · · · · -	👝 🐥	•
		Canacitor and	•
		· Capacitor and · · · · · · · · · · · · · · · · · · ·	•
		Zener diode protect.	
· · · · · · · · · · · · · · · · · · ·			
		switch	
		· · · · · · · · · - <u></u> · · · · · · · · · · · · · · · · · ·	-
		· · · · · · · · · · · · · · · · · · ·	•
			- <u>.</u> . /

Circuit Simulation using MATLAB


```
Circuit Analysis
```

> The magnitude of the voltage spike is incorrect.

Magnet Design

Procurement

<u>Component</u>	Description	<u>Quantity</u>	<u>Cost</u>	<u>Manufacturer</u>
Cathada	Tungsten Rod, 3/16" x 6"	2	\$ 33.24	McMaster Carr
Catilode	Stainless Steel 304, 3/16" x 6'	1 \$ 9.36		McMaster Carr
Anode	SS Steel Tube 1/2 OD, 0.37 ID 3' P# 9220K461	1	\$ 8.79	McMaster Carr
Argon Gas Cylinder	20 CF, Welding Cylinder	1	\$ 77.00	Welding Supplies from IOC
Argon Gas	20 CF Fill	1	TBD	TBD
Hose	High/Pressure Vacuum Hose	1	\$ 29.17	McMaster Carr
Hose Fitting	Outlet Fitting, Right Hand Thread, Brass	1	\$ 1.23	McMaster Carr
Housing/Nozzle	Stainless Steel 304, 2' Diameter, Stock	1	\$ 56.50	McMaster Carr
O-Ring	High Temp Buna-N O-Rings, 1" OD, 3/32" Width	2	\$ 18.24	McMaster Carr
Bolts (Anode)	P# 92185A078	1	\$ 3.23	McMaster Carr
Bolts	Stainless Steel 316, Fully Threaded, 7/8" Long, 1/4"-20 Thrad	1	\$ 5.23	McMaster Carr
Nuts	Stainless Steel 18-8, Easy-On Flange Hex Locknuts, 1/4"-20 Thread	1	\$ 7.78	McMaster Carr
Insulation	Macor Rod P#8489K131	1	\$ 71.34	McMaster Carr
IGBT	Part# IRG7PH30K10DPBF	1	\$ 8.73	Digi-Key
Inductor	100.0 μH, 6 A PART#1410460C	1	\$ 2.62	Digi-Key
Switch	PART# C3900BA	2	\$ 8.92	Digi-Key
Potentiometer	Part# AVT20020E200R0KE	2	\$ 31.24	Digi-Key
Magnet	Ceramic Ring Magnet, ID 2"	3	\$ 11.25	American Science & Surplus
		TOTAL	\$ 383.87	

Potential Challenges/ Safety

Safety

- •High voltages/currents
- •High temperatures
- •Ar gas asphyxiant

Challenges

- •Lots of assumptions
- •Multiple tests needed

Future Plans

•Order materials

•Test voltage spike of circuit

- •Measure resistance of plasma
 - Determine whether to insert additional resistor or transconductance amplifier

•Design mounting and thrust measurement apparatus

•Create test plan

Questions?