TEAM 2 – BIAXIAL TENSILE TESTER

GROUP MEMBERS:

Ben Hainsey Nicole Walsh Eric Hebner

SPONSOR:

TERRY SHAW (CUMMINS INC.)

GRADUATE CONSULTANT:

PARKER HARWOOD

FACULTY ADVISOR:

DR. WILLIAM OATES

QUESTIONS TO BE ADDRESSED

- What exactly does a biaxial test provide?
- S PULLING ALONG MORE AXES ALWAYS BETTER?
- WHY IS A COMPRESSION TEST DIFFICULT FOR OUR GASKET MATERIAL?
- What are some different techniques of testing materials on more than one axis?

POLYMERS

- THREE DIFFERENT TYPES
 OF STRESS-STRAIN
 BEHAVIORS:
 - CURVE A: BRITTLE
 - Curve B: Plastic
 - Curve C: Elastomer
- STRAIN RATE AND
 TEMPERATURE GREATLY
 INFLUENCES
 MECHANICAL
 BEHAVIOR¹

Figure 1: Stress-strain behavior of polymers. 1

ELASTOMERS

- HAVE ABILITY TO ACHIEVE LARGE DEFORMATIONS AND ELASTICALLY SPRING BACK INTO ORIGINAL SHAPE.
- THE MODULI OF ELASTICITY IS QUITE SMALL AND VARIES WITH STRAIN SINCE STRESS-STRAIN CURVE IS NO LONGER LINEAR
- As a tensile load is applied the crosslinked molecular chains will uncoil in the stress

DIRECTION

Figure 2: Schematic of Crosslinked Polymer chain molecules. ¹

ELASTOMERS (CONT.)

- VULCANIZATION
 - THE CHEMICAL REACTION WHICH PRODUCES CROSSLINKING IN ELASTOMERS.
 - MODULUS OF ELASTICITY, TENSILE STRENGTH, AND RESISTANCE TO DEGRADATION ALL ENHANCED BY VULCANIZATION
- UNVULCANIZED RUBBER
 - FEW CROSSLINKS
 - SOFT, TACKY, POOR RESISTANCE TO ABRASION

Figure 3: Stress-strain curve that depicts what the process vulcanization does to elastomers. ¹

MATERIAL TESTING

- In order to model materials properly accurate predictions of properties are needed
 - Uniaxial tension
 - EASY TO OBTAIN WITH TENSILE TEST
 - Pure shear
 - Done with planar tension test
 - Uniaxial Compression
 - INACCURATE DUE TO THE FRICTION BETWEEN THE LOAD PLATES AND THE SPECIMEN
 - CAUSES A MIXED STATE OF COMPRESSION, SHEAR, AND TENSILE STRAIN²

MHA BIYXIYI LENZIONS

- A BIAXIAL TENSILE STRAIN IS EQUIVALENT TO A UNIAXIAL COMPRESSIVE STRAIN.
- MOHR'S CIRCLE
 - BECOMES A POINT CIRCLE
 - No shear forces are present
- POISSON'S RATIO NEARLY 0.5
 - Means a process of constant volume

$$ullet \gamma = -rac{\epsilon_z}{\epsilon_x}$$

EQUAL BIAXIAL TENSION

- FOR INCOMPRESSIBLE
 MATERIALS THIS
 CREATES A STATE OF
 STRAIN EQUIVALENT
 TO PURE
 COMPRESSION.
- FREE OF THE FRICTIONAL EFFECTS

Figure 4: (Top)
Equal biaxial
stress state.
(Bottom) FEA
analysis of equal
tensile strain ²

GASKET MATERIAL

- RUBBER
- PAPER
- •N-8092
- •TS-9003
- •MP-15

EXISTING BIAXIAL MACHINES

- SEVERAL EXISTING COMMERCIALLY AVAILABLE MACHINES
- TYPICAL DRAWBACKS INCLUDE SIZE, APPLICATION, BUT THE MOST IMPORTANT IS PRICE
- How ours is supposed to be different.

EXISTING BIAXIAL MACHINES (CONT.)

- Pulls along two axes
- Complexity
- Why this is undesirable for our material

EXISTING BIAXIAL MACHINES (CONT.)

- Size is important!
- Pulls Along 8 Axes (16 Pulleys)
- Better, but not good enough

- Similar to previous design
- Problem with loading
- Again, size is important

WAYS OF APPLYING AND MEASURING FORCE

- Two Options When Applying Force
 - 1. Self-Powered System
 - 2. Have System Driven By MTS Machine

WAYS OF APPLYING AND MEASURING FORCE (CONT.)

- 1. If Self-Driven
 - Must Use System to Measure Applied Force
 - SPRING SYSTEM
 - LOAD CELL
- 2. If POWERED BY MTS MACHINE
 - Load Cell Built In
 - ONLY NEEDS TO BE CALIBRATED

GRIPS

- Requirements
 - DEFORM THE SAMPLE AS LITTLE AS POSSIBLE
 - MORE LIKELY TO TEAR AT GRIPS
 - HOLD THROUGH FULL RANGE OF STRETCH
 - MAINTAIN PLANAR ORIENTATION
 - NO BENDING OR SHEAR
 - BE AS SMALL AS POSSIBLE
 - MAXIMIZES NUMBER OF GRIPS
 - Makes smaller samples possible
 - STRONG ENOUGH TO ENDURE FORCES WITHOUT FATIGUING

GRIPS (CONT.)

- Current Design Parameters
 - MAINTAINING PLANAR ORIENTATION
 - CABLE AND GRIP IN SAME HORIZONTAL PLANE
 - ATTACH TO BASE TO PREVENT TWISTING
 - FATIGUE PREVENTION
 - DESIGN TO ENDURE FORCE GREATER THAN FORCE AT WHICH CABLE WOULD SNAP

GRIPS (CONT.)

- ATTACHMENT POSSIBILITIES
 - SURFACE OF PADS
 - TACKY SURFACE
 - HORIZONTAL RIDGES
 - SPIKES
 - Tensioning Methods
 - SPRING
 - BOLTS OR SCREWS
 - Non-Contact with Surface
 - ADHERE MATERIAL TO THE SAMPLE
 - Have Grips push against material

FINITE ELEMENT ANALYSIS (FEA) MODELS

- NEO-HOOKEAN
- MOONEY-RIVLIN
- OGDEN
- YEOH
- Many Others
- STRESS-STRAIN CURVES
- BEST MODEL DEPENDS ON MATERIAL PROPERTIES

FEA (CONT.)

- REQUIRED TEST DATA
 - SIMPLE TENSILE
 - PLANAR TENSION
 - BIAXIAL PLANAR TENSION

FEA (CONT.) GETTING USEFUL DATA AND SELECTING A MODEL

- PERFORM ALL THREE TESTS AT SAME RATE OF STRAIN
- Eliminate excess data points
- Run several models and select one that best predicts behavior

FEA (CONT.) FINAL RESULTS

VERY PREMATURE PROTOTYPE (FOR FUN)

CHANNEL FOR GRIPS TO SLIDE

CONCLUSION

- WE STILL HAVE A LOT OF WORK TO DO IN DESIGN DUE TO EXTENSIVE BACKGROUND RESEARCH
- Design will include multiple axes
- DIFFERENT DATA ACQUISITION TECHNIQUES WILL BE CONSIDERED IN DESIGN OF OUR SYSTEM

REFERENCES

- 1. http://www.axelproducts.com/downloads/CompressionOrBiax.pd
 <a href="http://www.axelproducts.com/downloads/compressionOrBia
- 2. Callister, W.D. (2007). Material Science and Engineering, An Introduction; 7th ED. York, PA: John Wiley & Sons, Inc.
- 3. Day, J. and Miller, K. (July 2000), Equibiaxial Stretching of Elastomeric Sheets, An Analytical Verification of Experimental Technique. Equibiaxial Stretching, Rev 2. 1-8.
- 4. ALI, A., HOSSEINI, M. AND SAHARI, B.B. (APRIL 2010), A REVIEW AND COMPARISON ON SOME RUBBERY ELASTICITY MODELS.
- 5. MSC.SOFTWARE CORPORATION (2003), EXPERIMENTAL ELASTOMER ANALYSIS, PART NUMBER: MA*2003*Z*Z*ZSM-MA103-MT1