

Biaxial Tensile Test Fixture

Ben Hainsey, Eric Hebner, Nicole Walsh

Department of Mechanical Engineering Sponsor: Cummins Inc.

PROJECT SCOPE

- Biaxial test data is the most difficult data to acquire due to the rarity of biaxial test machines in labs
- A test fixture is needed to perform biaxial tension tests in uniaxial test machines

NEEDS ASSESSMENT

- Fixture should be designed for use with an MTS machine with no modifications
- Build prototype and manufacture specimen pieces
- Validate the fixture and data acquisition

BACKGROUND

- The frictional effects that occur during uniaxial compressive testing of gasket material generates inaccurate data
- Biaxial tensile strain is equivalent to a uniaxial compressive strain

SPECIMEN DESIGN

Force simulations were done to determine which specimen geometry would be chosen

Baseplate components

FUTURE WORK

- Load cells on each cable so force can be calculated per
- Use of digital image correlation data acquisition to measure radial strain

CONCLUSION

- Accomplished the scope of the project and met our sponsor's needs
- Further calibration is needed to verify the accuracy of the data

ZZ Strain Profile

Specimen Manufacturing

Fracture

Strain measurement

ACKNOWLEDGEMENTS

- Our sponsor Terry Shaw at Cummins Inc. and our faculty advisor William Oates was instrumental to the completion of this project.
- We have also received tremendous help from the following individuals at the National High Magnetic Field Laboratory: Scott Bole, Robert Stanton, and Robert Walsh

Before fracture