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1.0 Abstract 
This document describes the FAMU/FSU College of Engineering’s rover design for the 2013/2014 NASA 

RASC-AL Robo-Ops competition. The team consists of five undergraduate engineering students each 

with interests in space exploration and robotics. The team has experience in fields pertinent to remote 

robotic systems such as wireless communications, object-oriented programming, materials science, and 

mechatronics. Professional guidance and working facilities have been provided to the team by their 

main advisor, Dr. Jonathan Clark, and the STRIDe Lab, which operates under his direction. Additional 

guidance has been provided by the Electrical Coordinator, Dr. Michael Frank, and the Mechanical 

Coordinator, Dr. Kamal Amin.  

The goal of this year’s team was two-fold. For one, the team was to build upon the successes of last 

year’s competition team while developing cutting-edge designs to overcome the shortcomings of the 

previous year’s rover. Furthermore, the team had the goal of entering the 2014 NASA RASC-AL Robo-

Ops competition. The team made many improvements upon the design, namely improving the controls, 

enhancing the locomotion, implementing a new gripper, and utilizing the Verizon 4G network for 

communication with the rover. However, the team was unable to meet all their goals as NASA denied 

their proposal to enter the competition based on the locomotion of the platform. This was quite a blow 

to the team, especially since this event drastically affected the economics of the project and the 

locomotion was seen by NASA as a strong point in last year’s competition. The change in opinion by 

NASA was quite a setback, however, the team recovered and modified the goal with a view to next 

year’s competition. 

With respect to the rover itself, the proposed design features hexapedal locomotion which provides the 

rover with key features to be rover successful. For one, the legs can operate over terrain that wheels 

cannot. On top of the platform is a four degree of freedom robotic arm designed with a complementary 

unique compliant gripper. Finally, this year’s design features a new control interface will allow for real 

time control and dynamically improved communication throughput paired with iterations of 

redundancies.  

2.0 Team Members and Facilities 
Jason Brown, Project Lead, Lead Arm Programmer – Jason Brown is a senior at The Florida State 

University pursuing his BS in Mechanical Engineering. He spent this past summer working in the Center 

for Intelligent Systems, Controls and Robotics on the development of an autonomous quadrotor. The 

work focused on the integration of an autonomous quadrotor with an autonomous ATV. 

Linus Nandati, Communication Specialist – Linus Nandati is a Senior at The Florida State University and 

is pursuing a BS in Electrical Engineering. Currently, he is employed by Tech One IT Consulting as a 

Networking Intern and will be promoted to a full-time professional upon graduation. His area of 

expertise is communication systems and network security. 
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Boris Barreto, Chief Programmer – Boris is not only bi-lingual in English and Spanish, but is also a dual-

major in Electrical and Computer engineering. His specializations include hardware and software 

engineering and has experience in communications, electronics, and power. He is eager to implement 

these skills in engineering our Robot. 

Tsung-Lun ‘Chris’ Yang, Compliant Gripper Designer – Chris is a citizen of both U.S and Taiwan, he 

fluently speaks both English and Mandarin Chinese. Chris joined the STRIDe Lab in 2013 as a research 

assistant to focus on specialized attachment mechanisms for dynamic climbing on natural surfaces. This 

experience should transfer towards our claw mechanism. 

Justin Houdeshell, Robotic Arm Designer – Justin has held many leadership positions and understands 

dedication.  Multiple years’ experience as the Robotics Captain in HS, has led his team to nationals on 

several occasions. Justin is very familiar with the implementation of cameras and sensors to develop 

autonomous robots. Justin lives an active well-rounded lifestyle with academia as first priority. 

STRIDe Lab, Working Facilities – Scansorial and Terrestrial Robotics and Integrated Design Lab was 

founded in 2007 by its director, team advisor Dr. Jonathan Clark, with the aim of developing robotic 

platforms which can challenge the agility and versatility of animalsand insects. STRIDe Lab has worked 

extensively on the design and control of legged platforms and is well equipped for the task of developing 

a legged rover. The lab boasts several tools to aid in the manufacture of a rover including a laser cutter, 

composite material construction tools, extensive analysis and testing devices, and a capable machine 

shop located adjacent to the FAMU/FSU College of Engineering. 

3.0 Lessons Learned 
Last year the FAMU-FSU team competed with a legged rover with a low degree of freedom robotic arm, 

utilized a 3G/4G Verizon Wireless Dongle inserted into a type G router which communicated commands 

sent from the home base GUI system via TP-Link MR3420 router LAN connections to 2 Raspberry Pi’s. 

The Raspberry Pi’s connected sent commands to a Xula2-LX25 FPGA via SPI communication, which sent 

commands to each of the six individually actuated legs.  

The rover consisted of 6 independently actuated C shaped passively compliant legs utilizing Buehler’s 

Algorithm to command the position of each leg. The legged motion provided a unique and capable 

means of handling the various obstacles at the NASA rock yard. Experience from both last year’s team in 

the competition and experiences in the Lunabotics Competition in 2012 has shown a hexapedal legged 

the platform is capable of handling sandy terrain (including fine Regolith sand), steep inclines, and 

obstacles larger than the ground clearance. This further supported the ability of legged locomotion and 

thus we plan to implement the hexapedal locomotion as will be discussed later. 

While the locomotion platform performed well against any terrain in a straight line, the control 

algorithms struggled with navigating around obstacles and handling minor adjustments. The legged 

locomotion had a fixed minimum distance for forward motion with standard stepping motion. 

Additionally, turning motions are more challenging to accomplish compared to wheeled platforms. The 
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rover last year had 3 different gaits: moving forward/reverse, turning in place, and a hill climbing gait. 

The team experienced challenges in moving to a rock once it was identified. Some of the limitations of 

the control are inherent to the locomotion system, which include the standard step size which 

influences the minimum in place turn which can be achieved. This made clear the need for more control 

schemes to effectively maneuver the course. Some of the limitations were overcome with new gaits and 

control schemes such as turn-while walking, which will be discussed below. 

The Sample Extraction Module from last year was designed to take advantage of the unique locomotion 

platform, having only 2 linear degrees of freedom in the x and y directions, with the rover itself 

providing the third degree of freedom. The mechanism was relatively slow from the point of identifying 

a sample to acquiring the sample. The system’s stored configuration was far away from the extraction 

area. Next, the system required the operator to make many minor adjustments once the system was 

deployed. Limited visibility and perspective from the main camera then amplified the difficulty in making 

the small adjustment. The limited workspace hindered the modules collection speed which was then 

amplified by the limited movement of the rover. This year, the team completely revamped the arm, 

creating a three degree arm and gripper. With increased mobility and intuitive controls, the modified 

arm is a huge improvement and it will be discussed below as well. 

The user control from last year was a GUI system which used command inputs to control the rover. The 

command inputs were constructed through the GUI in the form of arrows which designated direction 

and a window where the user entered the desired number of steps. The system would then execute the 

command and a new command could not be entered until the previous command had been completed. 

This method of user input slowed the team in handling the rover, for it required several seconds to enter 

each command. Since hundreds of commands were entered during competition, the seconds added up 

and the added lag in communications hindered user command speed. This made clear a new interface 

need to be developed which was more intuitive and allowed for the rover to respond in real time. There 

were several ideal features from the GUI such as a large display for the video feeds and relatively 

intuitive controls. This year, the GUI will implement more advanced commands coming from an Xbox 

controller. 

Last year’s communications system utilized Verizon Wirelesses 3G network to send commands to the 

rover and send the video feed to the mission control. The Verizon network was slower than expected on 

the day of competition, which resulted in the connection being dropped multiple time during 

competition. This made clear a more advanced communication system would be necessary to maintain 

connection and transmit the necessary video feed. This year, the team upgraded to the Verizon 4G 

network and used the services of no-ip.com to secure IP addresses. The improved communications 

design will be discussed below. 

The table below summarizes the lessons learned from last year’s team and the improvements made 

over the past year: 
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Table 1 -- Lessons Learned 

 Performance During Competition Lessons Learned 

Locomotion Straight Line handled all obstacles 
Navigation was challenging 

Showed legged motion’s ability to handle obstacles 
Showed need for additional gate types 

User Interface Required multiple commands to 
execute step based control 

System slowed teams ability to control the rover and 
real time interface would be desirable for competition 

Communication Connection dropped multiple 
times and lagged continuously 
during competition 

Communication dependent on single network is 
vulnerable to network fluctuations. 

Sample 
Extraction 
Module 

Able to pick up single rock, but 
struggled for several minutes and 
failed to acquire an relatively 
easy sample 

Slow mechanism 
Poor vision 
Limited reach/workspace 
Poor terrain adaptation 

4.0 SEM System 

4.1 –Robotic Arm 

4.1.1 – Robotic Arm Construction 

 A goal for this year was to develop a new robotic arm with a higher degree of freedom and 

lighter weight. We wanted to reduce the weight of the arm as it weighed around 10 kg, the new arm 

weighs no more than 3 kg, approximately 1/3rd  of the weight. The old arm was capable of 2 degrees of 

freedom, this has also been improved, doubled to 4 degrees of freedom. If we examine the design of the 

current model arm, we started with a target reach and strength. Over engineering to minimize error, we 

ran calculations with a large budget expecting to receive such funding. The design was to use square 

aluminum beams, stainless steel plates, and large high efficiency motors. 

 

Figure 1 -- Sample Extraction Module Arm 

 With this basic design, materials, and motors selected, simulations were ran to determine the 

torque loads on each motor as well as the stresses along the ligaments of the arm. This ensured that all 
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our components would work and gave us the ability to extrude material from the beams to reduce 

weights and torques. Creo Parametric simulations provided all necessary data elements. When the 

budget had been reduced significantly, the same general design was created with the available parts. 

 

Figure 2 -- Motors Selected for Arm 

  The STRIDe Lab provided us with an array of tools as well as a few materials. To overcome the 

unexpected change in budget, we shorted the desired length of the arm by about 30%, which would still 

allow plenty range of motion. Instead of square aluminum beams, parallel ABS sheets used. Now with 

different distances and materials, calculations and more simulations told us the cheapest motors we 

could now use were 1/8th the cost of the original design and much lighter. We kept the arm slightly over 

engineered to allow for heavier object collection and for future project work. 

 In this current and final design, sufficient reach was achieved and the weight had been reduced 

significantly. It is comprised of 2 large Pololu DC motors, one directly at the base with a high torque 

shaft coupling agent. The second drives a chain belt to the elbow joint and is attached as near to the 

base as possible to reduce strain on the first motor. A Pololu “micro-motor” is in retrospect weightless 

and paired with a small gearbox powerful too, this is found at the wrist which attaches to the innovative 

robotic extraction module. 

 The arm was designed to be constructed using the tool available in the STRIDe Lab which include 

a drill press, hack saw, and laser cutter. The laser cutter allow for 2D cuts of most plastics up to a 1/4”. 

The laser cut parts were then drilled to allow screws to support 3D structures. Several parts were 

ordered to increase the precision of the manufacturing. The shafts, bearings, shaft couplers, and shaft 

clamps were all purchased from Misumi, while the motors and encoders were purchased from Pololu. 

 All in all, the robotic arm was physically a success as it meets each of our specifications. The 

unfortunate part is the programming as the DC motor and motor controller are different makes, they 

didn’t work as easily as plug-and-play.  

4.1.2 – SEM Programming 

 With the chosen design of a 3 degree of freedom (DOF) arm with a 1 DOF wrist and a 

potentiometer model, the programming had to provide precise position control and had to be able to 

read the positions from the potentiometers. In order to provide the precise position control, the 
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RoboClaw 2x30A motor controller with built in PID control command was chosen to read the encoders 

and internally make decisions on the direction and speed the motors would move. PID control uses the 

error in the position and desired velocity to scale the motor power. For our purposes, the motors 

desired position would be set by the potentiometer model and the desired speed would be set to zero 

since the arm needed to hold its desired position.  

 

Figure 3 -- RoboClaw Motor Controller 

 The RoboClaw motor controller would be connected to one of the Raspberry Pi control modules 

and communicate using UART communication protocols. UART is a 2 wire communication protocol that 

uses a transmission and receive terminal, such that the transmit terminal from one device goes to the 

receive terminal on the second device and vice versa. The RoboClaw then would read the information 

sent across the UART lines and compare the input to a bank of set commands. Each command has a set 

order of inputs it is expecting with an example provided in Fig. X .  The address of the RoboClaw is used 

to distinguish between several RoboClaws which like the team used. As part of the communication 

protocol, a value called checksum is used to ensure all the values sent are correct. Checksum is the sum 

of all the previous values masked to 7 bits.  

 

Figure 4 -- Example Command for RoboClaw 
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 The RoboClaw built in PID command however would not function. When the command was sent 

to the RoboClaw, no output would occur. This generally means the command was sent incorrectly, but 

the values sent were following the user manual. The team is still in communication with the 

manufacturer to ensure the command is being sent correctly and to determine any other possible bugs 

with the programming. Since the built in PID commands did not function as expected, the secondary 

option was to create the PID control on the Raspberry Pi. This is inherently an inferior solution since all 

decisions are made at the speed of the communication protocols can support rather than the speed of a 

microprocessor which operates at speed 100 to 1000 faster than the communication protocols can 

support. Additionally, it places a much larger processor load on the Raspberry Pi. While the solution was 

not ideal, the PID control through the Raspberry Pi does work with moderate success. Its operates at 

around 25-50 Hz, which is about the speed the motor can react, which is not ideal. Since the solution is 

not ideal, the team is still attempting to work with the manufacturer to debug the onboard PID code. 

4.1.3 – Potentiometer Arm Model 

 As part of our goal to make a more intuitive and user friendly interface, the user input for the 

robotic arm is a potentiometer model the user can physically move. The potentiometer model, shown in 

Fig. X , has a high resolution potentiometer at each joint which changes resistance as the model is 

moved. The potentiometers are independently connected to a DragonBoard microprocessor which has 

multiple analog to digital converters (ADC) pins. This is necessary to convert the potentiometer to a 

digital signal which can be sent from the command station to the rover and be understood by the PID 

control. The ADC on the DragonBoard is 10 bits, meaning that the potentiometer which will be supplied 

5V from the microprocessor, can have a digital value ranging from 0-1024 corresponding to 0-5V 

through the potentiometer. This digital value is then mapped to the encoder position of the motor, and 

the desired encoder position is sent to the PID control. The DragonBoard also has serial communication 

commands and can send the potentiometer values through a USB terminal to the command computer 

which reads the values in the GUI and transmits the values. 

4.2 – Gripper Design 

4.2.1 – Overview 

The sample extraction system needs a mechanical component to grasp rock samples at the end effector 

of the robotic manipulator. According to the competition guidelines, rock samples will vary in sizes and 

masses ranging from 2 - 8 cm in diameter and 20 - 150 g mass. The mechanism must be capable of 

acquiring largest rock sample discretely as points will be awarded for the selection of specific rocks. The 

component must be versatile in rock acquisition, and strong enough to endure competition 

environment. 

4.2.2 – Core performance 

The core system of this gripper is based on two actuated four bar mechanism. This mechanism will 

effectively consist of grounded crank and rocker links connected by a coupler link. The coupler’s motion 

is used for actual grasping, and this motion made up the pincher component of the design which 

provides the precise capturing motion.  



Team 11 - 8 
 

The end of the gripper is a wide area arc attachment lined with elastic webbings designed to conform to 

the orientation and shape of the sample to provide increased tractions between the gripper and the 

sample without the need of increased torque. 

4.2.3 – Preliminary design 

A model of the gripper design is pictured in the figure below. The four bar mechanisms are planned to 

comprise of cardboard links for the process of rapid prototyping. The coupler-arc are connected to a 

base enclosure via mirrored mechanisms on each side of the enclosure. The Driving Four bar 

mechanisms are driven by one servos, power transmitted via the spur gears connected to the crank. 

In search for the elastic material for the gripper design, several important parameters were established 

to evaluate the material. First, the material must have great elasticity but also durable. This is to ensure 

the reliability and repeatability of sample extraction process. Second, the material must exhibit strong 

cold temperature tolerance. This is due to the extreme cold climate of the surface of Mars. First aid 

tapes were first equipped on the initial prototype as shown in figure. 

4.2.4 – Final design 

The final gripper design material is chosen to be ABS plastic instead of aluminum since the specific 

strength of the plastic was tested to be satisfactory. The design is powered by a Pololu 6V gear 

micromotor coupled to a spur gear train to transmit the output torque throughout. Two 1:1 spur gear 

arrangement couples the two drive cranks together to achieve the desired counter-rotating motion. The 

pincher two four bar mechanisms were improved to ensure the force angle of the crank to coupler 

remains sufficient when the gripper is fully closed.  

The compliant material for the end effector attachments have been carefully considered due to the 

potentially extreme cold climate of outer planets like Mars. The proposed material, 

polydimethylsiloxane (silicone rubber), is known for its elasticity and ability to withstand large 

temperature variation ranging from    -120C to 300C while maintaining the essential elastic properties. It 

is also important to note that the manufacturing process in which the silicone rubber polymer is 

synthesized and shaped determines the various temperature ranges the material can endure. Based on 

the low cost and abundant availability, the team will be using low grade silicone rubber sheets; however, 

selection of higher grade material would make the design suitable for extreme climates. 

4.3 – Gripper Concepts 

4.3.1 – Pitcher 

The common pincer style claws attempt to mimic the way relatively small objects are most typically 

secured by the human hand. These claws generally consist of prongs or fingers which move towards 

each other to capture an object and prevent further motion through continuous application of force. 

This style of claw is good at picking up discreet objects but requires a relatively high level of precision 

from the manipulator arm module due to the small end surface area of the pincher tip. 
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4.3.2 – Scooper 

The scooper design employs the term ‘scoop’ quite literately in its name. Most scooper design are based 

on the idea of using the geometry (generally a concave surface) and the direction of gravity to capture 

and retain an object or substance. Scooper are generally used to pick up large quantities of a material 

and are not ideal for acquisition of discreet objects for the reason that it often picks up unwanted 

materials along. Although Scooper can be operated successfully with much less precision than pincer 

style claws, it lacks the precision the pincher possesses. 

4.3.3 – Universal jamming gripper 

This gripper concept utilizes not so common technique of picking up objects. Instead of having rigid 

moving members which grasp or scoop and object, this universal gripper conforms to the object in 

which it is grasping. The gripper consists of an ordinary latex party balloon filled with ground coffee. 

When the coffee-filled balloon is pressed onto the desired object to be picked up, the balloon and coffee 

conform to the object. At this point, a vacuum pump evacuates air from the balloon, solidifying the 

balloon, and thus gripping the object. This solidification is due to a “jamming transition” experienced by 

the coffee. When the air is vacated from the coffee filled balloon, the particulates of the coffee are 

pressed against each other causing them to resist slipping by one another or causing “jamming.”  

This concept is very beneficial in that the gripper will not have to orient itself to the object being picked 

up, but rather simply press against it. Conventional grippers require the target object to be oriented a 

certain way between the contact points to be picked up. This concept has a major flaws when it comes 

to implementation in the competition, as it requires strong suctions from an air compressor and 

additional powers from the battery making it almost impossible to implement on a rover platform with 

limited battery power and weight restriction. 

5.0 System Components 

5.1 – Communication 
The figure below is a schematic illustrating the overall communications system. Mission Control, 

consisting of a computer with internet connection, communicates with the rover over the Verizon 4G 

Network. Mission Control makes up the first Local Area Network (LAN). The rover has a router that 

communicates with the Raspberry Pi mini computers that activate the robots legs and arm, and two IP 

(Internet Protocol) cameras that send a video feed, making the rover a second LAN. The router also has 

a Verizon 4G modem attached to its USB port. The Mission Control communicates with the on-board 

rover over the Verizon 4G Network using a service called no-ip.com. The no-ip.com service offers a url 

that access a pool of IP addresses. This allows the router to have dynamic IP addressing, without having 

the user to lose connection due to IP address changes, or having to constantly “sniff” or re-connect.  

ROVER COMUNICATION DESIGN OVERVIEW 

On board the rover, a router with a Verizon 4G LTE USB Card installed will link the rover’s components 

to mission control. This router will be linked with the mission control rover over a commercial WAN. Last 

year’s design relied solely on the Verizon 3G Network, however this lead to interruptions in 
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communication as the network faced problems on the day of the competition. This year, the team 

upgraded to the 4G network, which is up to 8 times faster than the 3G network. This will create less lag 

in the design and improve performance. 

The vision system will include an IP camera that sits atop the camera mast which is able to pan and tilt. 

A second IP camera is mounted to the Sample Extraction Module to ensure an optimal viewing angle for 

the user controlling the arm. The cameras are ideal for the design as they have specific IP addresses, 

making links to the router easier to implement. Hypertext Transfer Protocol (HTTP) will be used to feed 

the videos to the on-rover router. 

Secure Shell (SSH) protocol will be used to communicate with the Raspberry Pi mini-computers. The 

Raspberry Pis are programmed with the C programming language and have a Linux-based Operating 

System installed. The SSH server and client are readily available on many Linux distributions making SSH 

protocol a viable solution. Last year’s team discovered most wireless broadband carriers prevent 

incoming SSH connections, but do permit outgoing SSH connections. Thus, a script was written that, 

upon booting the system, connects the Raspberry Pi to a Mission Control port, allowing the server to 

reverse-SSH back into the Raspberry Pi allowing the user to communicate with the mini-computer.  

To communicate between different devices on the rover (i.e. between the leg motors and the mini 
computers) Serial Peripheral Interface (SPI) wires were integrated into the design. The SPI protocol 
transmits information in full Duplex, meaning it can transfer a byte and read another byte being sent all 
simultaneously. This property greatly improves the speed of the design. 

6.0 Locomotion and Control 

6.1 – Overview 

 

Figure 5 -- C Shaped Leg Design 

In order for the rover to be useful in collecting samples, it must contain a fluid locomotion 

system as well as a user-friendly control interface. The legged design which is being used for this rover 

requires precise control of each leg, which is established through extensive programming. While moving 

forward is simple with a wheeled platform, it requires very precise algorithms, specifically the Buehler 

Clock, in order to achieve the same effect in the legged design. This extra work will prove to be 

worthwhile when the benefits of the legged platform are exposed on the rock field. 



Team 11 - 11 
 

6.2 – Project Scope 
The goal for this year’s group is to improve on the locomotion system and controls system which 

was established previously. The rover was able to traverse different terrains fine, but it was very slow 

and limited in its range. The rover previously required a command from a complicated GUI for each 

input. The command would instruct the robot on which direction to move, how fast to move, and how 

many steps to take. After each command, the rover would return to standing position and wait for the 

next input. 

Although this was sufficient for a moving platform, it was by no means user friendly or fast. This 

year, three main focuses were established and were implemented. First, user interface will be improved 

to be more forgiving for the controller of the robot. Hopefully, a complete stranger will be able to take 

the machine and control it with minimal instruction. This was established through an XBOX controller 

and will be explained thoroughly below. Secondly, multiple gaits will be added to the rover to create 

more options for locomotion. Examples are Turn While Walking and Stair Climbing. Finally, existing 

commands will be improved in multiple ways. Two key points here are to ensure that the command can 

be run continuously so that the rover will continue to move until instructed to stop and to enable 

dynamic switching between gaits. These changes will allow for the rover to be easier to control and 

faster in its operation. 

6.2 – New Locomotion Gaits 

6.2.1 – Existing Locomotion Gaits 

The platform which was created last year was able to move in a very limited range of motion. 

The functions which were available included calibrate, forward walk, backward walk, turn-in-place, lay 

down, stand, and hill climb. Although these gaits combined to allow for movement to any general point, 

it struggled with specific locations. The c-shape legs are too big to do precise movements with these 

functions. For example, whenever one step is taken in the left or right direction, the rover moves 

approximately 30°. If a desired turn angle of 15° is desired, the rover would not easily be able to 

accomplish the task. Also, the need to stop moving forward while changing direction made for slow 

travel times. These problems are the motivation for the new turn-while-walking function. 

The locomotion functions each had individual functions and thus had different parameters that 

must be entered into the function to run. The lay down and stand functions were void and thus had no 

parameters. The Hill Gait function had a number of steps parameter and an RPM parameter. This two 

told the rover how many leg rotations to make and how fast to make them up a hill. Finally, the 

locomotion functions will all take in similar parameters. The parameter list contains RPM, direction 

(Forward, Backward, Left, and Right), and number of steps.  
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6.2.2 Buehler Clock 

 

Figure 6 -- Aerial View of the Robot to Display the Leg's Labels and Their Respective Groups 

When the robot walks in a straight line, the 0, 2, and 4 legs will be coupled together (call them 

set A), sharing the same movements. The 1, 3, and 5 legs will also be coupled (set B), and they will move 

at exactly 180° phase difference from set A. To be precise, this means that while one set is pointing 

directly downward, in its peak contact with the ground, the other set will be directly upright, at its 

highest point. 

 
 

 

Figure 7 -- Buehler Clock Graph for both Set of Legs (Red = A, Blue = B) 

To understand the locomotion further, one must understand the Buehler clock. The Buehler 

clock describes the relationship between the speed of the leg and its location in its rotation. When any 

given set of legs are on the ground, they must move slower than when they are in the air, so that the 

other legs can “catch” the robot right as they are leaving the ground stage. Figure 13 shows this 

relationship. The slope of the lines describes the speed of the legs rotation, the y axis describes the 

location in the legs rotation, and the x axis describes time. Notice that the legs change speeds at T/4 and 

(3T)/4. Notice that in this image, both sets of legs start and end at 0 and 2π respectively.  
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6.2.3 Turn While Walking 

 

Figure 8 -- Turn While Walking 

Now that walk is understood, turn while walking must be implemented. One’s immediate 

response to implementing turn while walking is to increase the speed of one side of the legs and thus 

create a turn. This design was considered but quickly failed when it was hypothesized and proven that 

the rover would simply fall over, since the legs would lose their coupling over time. The next idea was to 

adjust the phase at which the left legs differ from the right legs. For example, put leg 1 20° ahead of legs 

3 and 5, while simultaneously putting leg 4 20° behind legs 0 and 2. This will cause the left legs (the ones 

that are ahead) to hit the ground slightly before the right legs leave the ground. For the second that the 

legs are together on the floor, there will be a slight turning motion to the right, and then the robot will 

continue to move forward once the left legs catch up (at which point the other set of legs will have lifted 

into the air). 

 In order to ensure that even the most subtle angles could be reached through the turn-while-

walking function, a separate input parameter was introduced, called “angles”. This variable controls the 

phase between the legs, and ranges on a scale from 0 – 10, where 10 is the highest allowable phase 

difference and 0 is the lowest. In practical terms, 10 makes the difference between the legs 

approximately 5000 motor encoder values while 0 represents the normal forward walking function. 

When this value is increased, the time that the set of legs are on the ground together will increase and 

thus make for a wider turn. 
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6.2.4 Stair Climbing 

 

Figure 9 -- Starting Position for Stair Climb Gait 

Although there are no stairs on Mars (yet), a stair climbing gait was implemented in order to 

show the power of a legged platform over a wheeled platform. In order to implement the stair climb, 

the legs had to be grouped into pairs. The groupings were the “Back” pair, the “Middle” pair, and the 

“Front” pair. These three groupings were controlled in three phases, where each leg moved to a new 

position at a new speed. 

 

Figure 10 -- First Phase of Stair Climb Gait 

In the first stage, the rover starts in a new position on the stairs. Note that the “Back” and 

“Middle” pairs are in the same position, whereas the “Front” pair is in its own position. The “Back” legs 

then begin movement to rest on top of the next step in the stair case. While these legs are in the air, 

moving toward the next step, the other two sets hold the rover in place. 
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Figure 11 -- Second Phase 

In the second stage, the “Back” pair begins to push the rover up the stairs slowly. This holds the 

rover in place for the “Middle” set to move to the next step.  The “Front” legs are also still on the 

ground. They will begin to move slowly, pushing the rover up with the “Back” set. 

 

Figure 12 -- Final Phase Returning to Start Position 

In the third and final stage, the “Back legs continue to slowly push the rover up the stairs. The 

“Middle” legs have reached the next step and now begin to slowly push the rover up the stairs with the 

“Back” legs. These two sets will hold the rover while the “Front” set quickly rotates and catches on to 

the next step. At the end of this stage, the legs will be in the same position that they were in before the 

step climb, ready for the next step.  Notice that at all points, there are four legs holding the rover on the 

stairwell to prevent slipping or falling, making the function extremely consistent. 
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6.3 User Interface Improvements 

6.3.1 Existing User Interface 

 

Figure 13 -- GUI 

The existing user interface took the form of a Graphical User Interface. The GUI came equipped 

with the video feed, the temperature sensor readings for the motors, status indicators for the network 

connection, arm controls functions, and the necessary locomotion controls. To send a command, the 

number of steps and speed must be typed into their appropriate boxes. Then the button for the 

direction must be pressed. The command will appear in the command text box. If the send button is 

pressed, the command is relayed over the network and then the robot will begin motion. 

 

Figure 14 -- Madcatz XBOX360 Controller 

The GUI provided a lot of benefits, but the locomotion control was very slow and not user 

friendly. The large camera feed and the status boxes which came with the GUI were preserved and will 

be re-used in correspondence with a new control interface. The new interface will be an XBOX 
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controller, which will allow for quick, consistent locomotion control, all on a very comfortable and user 

friendly environment. 

6.3.2 – XPadder 

 

Figure 15 -- XPadder Window 

 XPadder is a program which was necessary to eliminate the GUI and transfer the control to an 

XBOX controller. It simulates the keyboard and mouse using a controller which allows for key mappings 

from the keyboard to the controller. A first prototype was created and tested. In this prototype, 

hardcoded commands were sent to the command line by pushing a button on the XBOX controller. 

While this allowed for control through a more user friendly device, it was not a sufficient design. The 

functions were limited by the number of commands which could be mapped to the controller, 

approximately 22. This means that if one button was used for “Forward Walk, 5 steps, 20 RPM” then it 

could not be altered in any way without accessing the software. In addition, the function inputs from the 

XBOX controller were slow and did not provide much of an increase in performance. XPadder is still used 

in the final design in order to operate the rover through the XBOX controller. 

6.3.3 – SDL & Curses Library 

 In order to allow for fluid movement which depended on individual key presses as opposed to 

commands, the SDL library was explored and implemented. SDL is a library designed to provide low level 

access to a keyboard. It is a software used in many computer games to control individual models in 

movement and interaction with their environments. This library would allow for individual key presses 

to be read into the program directly and interact with the code accordingly. The SDL library was 

downloaded and installed onto the locomotion Raspberry Pi and tested with sample programs. After 

multiple tests, the SDL environment proved to be counterintuitive and ineffective. 

 Curses is a terminal control library for Unix-like systems. The library enables the construction of 

text user interface, meaning that keyboard inputs could be read by a program and affect a function 

directly. The library provides necessary functions, specifically cbreak(void), halfdelay(int), flushinp(void), 

and getch(void).The  cbreak(void) function allows for input without pressing the enter key, halfdelay(int) 

tells the getch(void) function how long to wait before reading a default value for its return value, 
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flushinp(void) clears the input buffer which allows for the latest command to be read, and getch(void) 

waits for a user input and returns that input to a character value. 

6.3.4 – XBOX Controller Mapping 

 

Figure 16 -- Xpadder Window Used 

 With the library instantiated, the Madcatz XBOX360 controller could now be mapped to 

individual keyboard buttons. When the joystick is pushed forward, a string of ‘w’s appear on the 

command line until the joystick is released. This concept applies to every button on the joystick and is 

mapped by the following table. 

Table 2 -- Controller to Function Mapping 

Button Pressed On Controller Function 

Left Joystick-Up Forward Walk 

Left Joystick-Down Backwards Walk 

Left Joystick-Left Turn In Place - Left 

Left Joystick-Right Turn In Place - Right 

Right Joystick-Left Turn While Walking - Left 

Right Joystick-Right Turn While Walking - Right 

‘A’ Sit/Stand 

‘Y’ Calibrate Legs 

Left Bumper Decrease ‘angles’ by 1 

Right Bumper Increase ‘angles’ by 1 

Left Trigger Decrease RPM by 5 

Right Trigger Increase RPM by 5 

6.4 – Function Improvements 

6.4.1 – Motivation 

 A large problem with the walk functions incorporated in the rover’s previous design is the need 

to guess the correct distance to an object so that the correct number of steps could be input. There was 

little room for error and thus, to be precise, each command took up to 30 second each to be input to the 
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rover. This caused for extremely slow movement and a high amount of time wasted trying to get into 

position to pick up objects. A locomotion system which does not require step inputs but simply moves 

the rover continuously until told to stop would reduce this guessing and increase productivity. 

6.4.2 – Continuous Movement 

 The first issue which must be tackled in the programming is the slow nature of a robot which 

takes a predetermined number of steps. The goal is to make a machine which continues to move 

forward until the joystick is released, much like a wheeled machine would. 

 The first programming prototype was simple. The number of steps was reduced to one in each 

function and thrown in a continuous loop which ended when the appropriate button was released on 

the joystick. The theory was correct, but the implementation was faltering. The walk function would not 

exit upon release of the joystick. It was realized that there was an input buffer which was holding values 

for the character which ended the while loop. This buffer continued to fill and provided values to the 

while loop one by one. This resulted in unpredictable ‘walk’ distances and proved even more difficult to 

predict than the step-counting method used prior. 

In order to correct this, a new curses method was discovered. flushinp(void) is a library function 

which clears this input upon command. This made it so the while loop only read in the most recent 

character put in to check, which ensured that no fault commands were being input to the loop. This 

method worked for very specific situations. As planned, the legs would continue to rotate until the 

button is released. There were errors though. When the step ended and another command was input, 

the legs would sometimes have incorrect timing variables and result in an error. It was discovered that 

when the steps ended in an odd step, the legs ended at 180° off phase of the original start position for 

the walk command. This phase difference threw off the necessary timing variables which controlled 

where the legs should be and consistently resulted in an error. Even steps also had errors, though they 

were inconsistent and sometimes did not occur. 

6.4.3 – Dynamic Gait Switching 

 The Buehler clock functions which executed the walk commands were further examined. There 

were two timing variables which created the variable ‘BuehlerPhase’ which kept track of where all six 

legs should be in their rotations. These two timing variables were re-instantiated in each function 

execution, which solved the inconsistent errors in even steps.  Although the even steps were working, in 

order to allow for the rover to stop and continue a walking motion, the BuehlerPhase had to be changed 

to account for odd steps and even steps accordingly. First the main code was changed. An oddsteps 

variable was introduced and kept track of whether a given step was odd or even. This oddsteps variable 

was then input as a new parameter into the locomotion gaits. Inside the Buehler function, an if 

statement was introduced to check for oddsteps. If the function was executing an even step no further 

changes were necessary. The even steps were correct as is. If the function was executing an odd step, 

the BuehlerPhase was changed to (1.5 ∗ 𝐵𝑢𝑒ℎ𝑙𝑒𝑟𝑃ℎ𝑎𝑠𝑒). This resulted in the BuehlerPhase properly 

representing to the legs that they should be at 180° off of their original starting position and thus 

resulted in a smooth walking function for odd steps. 
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 This code was inserted into all locomotion functions and worked across each function. In order 

to implement dynamic switching between them, a new main file was written. This new file worked with 

an infinite loop which contained a large switch statement. The switch statement contained case 

statements for the following buttons and their corresponding commands. 

Table 3 -- Case Conditions and Their Corresponding Commands 

Case Statement Function 

‘w’ Forward Walk 

‘s’ Backwards Walk 

‘a’ Turn In Place - Left 

‘d’ Turn In Place - Right 

‘q’ Turn While Walking - Left 

‘e’ Turn While Walking - Right 

‘l’ Sit 

‘c’ Calibrate Legs 

‘i’ Decrease ‘angles’ by 1 

‘k’ Increase ‘angles’ by 1 

‘u’ Decrease RPM by 5 

‘j’ Increase RPM by 5 

default Stand And Hold 

 This switch statement allowed internally for dynamic switching. Whenever no buttons were 

being pressed, the rover would return its legs back to the standing position and enter a while loop which 

held the rover in place until a button was pressed. In this state, the rover would do nothing. Whenever a 

button was pressed, the legs would move into the starting walk position and enter their appropriate 

switch statement. The legs would then enter a loop which continued until the button was released. This 

loop would contain the walk function with the corresponding direction, oddsteps value, angles value, 

and RPM. When another button is pressed, the loop will exit and the switch statement will check the 

value. If the value is one of the possible case conditions, it will enter that condition and enter that while 

loop, flowing with little delay from one function to the other. This loop will continue until that button is 

released. When all buttons are released, the rover goes into the standing position and holds until a new 

command is entered. 
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Appendix A – Competition Overview 
A. Competition Rules and Requirements 
Competition Summary 

The NASA Rascal Robo-Ops competition’s goal is to create new and innovative solutions 

toward the development of rover’s capable of traversing mars which is simulated at the NASA 

Space Center. The rover must be controlled remotely over a commercially available wireless 

network, be able to navigate obstacles, and be able to identify and acquire brightly colored rock 

samples. Teams also must engage in public outreach to foster interest in space exploration and 

robotic development, utilizing social media and community events.  
 
Requirements for 2013 

The process to become a participant is as follows. First, a notice of intent form is submitted to 

the competition stewards. Next, an proposal documents is submitted (due December 8, 2013) 

which must be no more than 8 pages. From the proposals submitted, 8 teams will be selected 

(notified December 20, 2013), which nets the team a $5,000 grant to construct the proposed 

rover. 
 
Rover specs for competition trim 

In the rover’s “Stowed configuration”, meaning with all peripherals retracted, the rover must not 

exceed dimensions 1m x 1m x0.5m. The maximum mass (without payload) must not exceed 

45kg, or else points will be deducted. No internal combustion engines are allowed, and the rover 

must be water-proof. 
 
Rover performance and capability required 

The rover must be capable of traversing obstacles at least 10cm tall, negotiate +/- 33% grades, 

and traverse level sand surfaces for at least 20 feet of distance. The areas of the JSC Rock Yard 

to be included in the competition are the Rock Field, Lunar craters, Sand Dunes, and the Mars 

Hill. The rover must selectively acquire at least five irregularly shaped rocks while traversing the 

JSC Rock Yard. The rocks are outlined as having diameters from 2 - 8 cm, masses from 20 - 150 

gm, and be of different colors each corresponding to a point value. The rover must store and 

carry these rocks throughout the course. The JSC Rock Yard and the rocks of interest can be seen 

in Figure 8, below. 

 
Controls and Communications Requirement 

As stated before, the rover must be remotely controlled from the team’s home campus over a 

commercial cellular data network (ie. via wireless broadband card). Rover data must be sent 

from the rover itself to operators and spectators online. This data is required to consist of live 

video feed and some rover telemetry. The video feed must be capable of distinguishing color 

(rock samples), and must be recorded and posted on the team's website. 

 
Requirements for 2014 

After being selected to compete in the 2014 RASC-AL Robo-Ops competition, the team will be 

required to continuously document and broadcast rover development progress. These reports are 

required to outline how the team has met the aforementioned “milestones” of the competition. 

Next, each report will be introduced along with the milestones the team is expected to cover in 

that report.  
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Mid-Project Review Report + Video – due March 15, 2014 

The purpose of this report is to display to the competition stewards that a team is on schedule to 

completing a rover capable of satisfying all design and performance requirements. This report 

consists of a five-page written portion and a YouTube video. The whole report must demonstrate 

the rover’s present functionality and chronicle what is yet to come. Team must outline where 

they are with the project and how confident they are that their rover will be completed. If the 

stewards feel that a team’s report does not show this, they will be required to do a live follow-up 

web chat with the stewards to redeem themselves. Only after the stewards are satisfied with a 

team’s progress will be awarded an additional $5,000 grant money be awarded to a team. 
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Appendix B – Design Concepts 

B1.0 -- Proposed Designs 

B1.1 – Arm Concepts 

B1.1.1 – 2 DOF Arm 

 

The first arm concept is to improve upon last year’s design, a planar two degree of freedom arm. 

The design would need to be reduced and a more advanced wrist would be developed with the 

arm. The rover can have very precise control over it Z position making this arm simple and easy. 

 

 
Figure 17 -- 2 DOF Arm Design 

 

The advantages of this design were described by last year’s team, but will be explored again for 

comparison. The system requires the control of only 2 motors, and the control over the rover 

itself. The thought was also that by having fewer motors and systems, the overall weight would 

be reduced, and would impact the cost and reliability of the system. The final thought was that 

the arm remaining close to the body would keep the platform more stable. 

 

The desired advantages turned out to be some of the arms shortcomings. The control did turn out 

to be significantly easier, and allowed the team to develop a click to grab routine where the user 

could click on the GUI and the robot would move the arm into position to pick up the sample. 

This routine was not tested in competition because an encoder failed the night before 

competition. 
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The from the hardware desire, the arm could not fit into the competition dimensions with the arm 

remaining planar. A innovative rail follower was devised, but forced the arm into the air, which 

then hurt the center of gravity and the deployment speed. Finally, to achieve the reach desired, a 

large linear actuator was needed and then forced the rest of the system to be bigger and heavier 

than originally thought. 
 

B.1.2 – 3 DOF Arm with 1 Planar Joint 

 

Three degree of freedom arm concepts were then explored. The first of these was this arm design 

which has 2 revolute joints and a planar joint to extend the arm. This design would be similar to 

WPI’s design with the addition of a linear actuator instead of a rigid arm. 

 

 
Figure 18 -- 3 Degree of Freedom with 1 Planar Joint 

 

The advantages to this design is it requires less control than an arm like Caltech’s or Maryland’s, 

but still give the necessary degrees of freedom to reach most rocks without the rover needing to 

move. The design could still stay close to the body and keep the center of gravity low.  

 

The disadvantages for this design include the weight of the system which would likely by higher 

to include an linear actuator. The revolute joint would need to be designed to withstand the 

weight and the motors controlling the degrees of freedom would need to be stronger. 
 

B.1.3 – 3 DOF Arm with All Revolute Joints 

 

The final design explored is a three degree of freedom arm with all revolute joints. The design 

would consist of a 2 degree of freedom “shoulder” joint, and a 1 degree of freedom “elbow. The 

current concept is to include a 1 degree of freedom wrist, but this would depend on the gripper 

concept chosen. 
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Figure 19 -- 3 Degree of Freedom Arm with all Revolute Joints 

 

The advantages of this concept is the flexibility in it use and in its flexibility in placement on the 

rover. It could be placed on top of or in front of the rover without any difference in functionality. 

Additionally, the storage compartment could be placed in any location which is convenient. 

Finally, it can be very compact and utilize very lightweight materials and still be strong enough 

and have the desired range. 

 

The disadvantage is the advanced control necessary to utilize such a design. For it to be user 

friendly to use, the arm would need to have some form of automation, or at least control mapped 

from the x y z frame to the motor.  
 

B.2 Gripper Concepts 

B.2.1 – Scooper Design 

 

The first design discussed was a scooper designed gripper. Scoop is defined by Merriam Webster 

as “something that is shaped like a bowl or bucket and used to pick up and move things”. 

Essentially, it uses a distinctive shape and gravity to collect large quantities of material. It does 

not require as much precision as the pincer design which we will talk through next.  
 

 
Figure 20 -- Scooper Design in Action 
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B.2.2 – Pincer/ Finger Designs 

 

Pincer/finger grippers use the same technique as the human had to grab and secure small objects. 

The pincer normally has two fingers which can move in toward an object or release away from 

the object, and uses a constant force on the object to keep it secured. It is very good at picking up 

discrete objects, but needs to be placed precisely for the object to be secured. 
 

 
Figure 21 -- CAD Model of a Pincer Design 

 

B.2.3 – Universal Gripper 

 

Some more recent gripper research has gone into attempting to develop a gripper which has the 

ability to easily grab a discrete object. This has led to the development of universal grippers 

which utilize a conformable material to grasp an object. The gripper shown below in Figure # 

consists of a balloon filled with ground coffee. The balloon is pressed onto the object desired, 

and then a vacuum pump evacuates air from the balloon, causing the coffee grounds to jam 

against each other, forming a ‘rigid’ gripper. 
 

 
Figure 22 -- Universal Gripper Design 
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B.2.4 – Compliant Gripper Mechanism 

 

The combinations of the previous designs lead to very interesting concepts. The first of these is 

compliant fingers which combines the universal gripper with the pincer gripper. Compliant 

finger grippers need to be precise in their implementation, but require less precision than rigid 

fingers. They can reach and grab discrete objects in confined spaces, however the precision 

required to use them is still very high. There are a few finger ideas on the board, 2 pronged, 

which is small and can reach most everything but needs to squeeze the rock and get a good grip 

as it’s only touching the rock in two places, or 3 pronged, which would hold the rock very stable 

but may not be able to get access to 3 different sides of the rock. The FESTO Fin Adaptive 

Finger (right) has gained our curiosity as its shape conforms to object it is grabbing and is 

delicate enough to pick up an egg. The second idea for fingers are rake-like, skinny tendrils on 

the fingers allow the fingers to close around the rocks shape to have greater contact area.  

 

 
Figure 23 -- FESTO Fin Adaptive Fingers 

 

By combining the universal gripper, with a scoop design, along with some elements of the 

pincer, you can come up with a mesh gripper. The mesh gripper consists of two clamps that have 

a mesh screen in their center, then became an elastic mesh grip which will be more versatile and 

have a higher friction coefficient. With the bottom support was removed to create an upside-

down U structure so we can get the mesh as close to the ground as possible. This mesh gripper 

clamps onto the rock and it conforms to the unique shape of the rock. 
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Figure 24 -- Cad of Mesh Gripper Design 

 

B.3 Communications Concepts 

Last year’s design utilized Verizon 3G coverage to communicate with the platform. This was 

advantageous considering the fact that a tower is very near to the competition site. A “mission 

control” center was established in Tallahassee where the users controlled the rover. The design 

was simple. Mission control consisted of a user working with the GUI to operate the robot. The 

GUI would be on a laptop. Using a 3G USB Card, the laptop would communicate with a router 

on board the rover. The router has a USB port, which is helpful in communications. Last year’s 

operators plugged in a Verizon 3G card in the router as well. The on-rover router would 

communicate with the Raspberry Pi computers, thus linking the user to the rover. 

B.3.1 – Graphical User Interface 

The Graphical User Interface (GUI) is a custom computer application which aims to greatly 

simplify the operation of the rover through integration of information display, in the form of 

video feeds and sensor data, and rover control. In essence, it gives the user a tool for controlling 

the rover.  

 

In last year’s design, the GUI was written in the C# program language. Below is an image of the 

objective of the design:  
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Figure 25 -- Previous Year's GUI 

 

The GUI was operational, but many aspects will be changed in order to make the GUI more user 

friendly. For one thing, the user would have to input the number of steps and the direction that 

the rover should proceed. The process was very cumbersome, especially if the user needed the 

rover to move to a specific spot. As the rover will be competing with other rovers to pick up the 

most rocks, creating a GUI that allows the user to interact more freely with the rover would be 

much more efficient. There were also locomotion concerns, as was discussed earlier, as the rover 

could not turn while walking. So the GUI only has the controls Forward, Reverse, turn-Left, and 

turn-Right. Our goal is to implement an Xbox or PlayStation controller allowing the user 360 

degrees of control, with the ability to change direction while moving. We wish to eliminate the 

need to enter the number of steps prior to moving. A simple push of the joystick will command 

the rover to move. 

B.3.2 – Communications and Networking 

To establish communication between the cameras and computing systems on the rover and the 

Mission Control server located at the college detailed networking protocol is desired. The figure 

below displays the design of the network. The blocks on the right represent (top to bottom) the 

rover arm, locomotion and cameras. 

 

Figure 26 -- Communication Block Diagram 
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As the above figure shows, communications via SSH (Secure Shell) were established between 

the on-rover computers and the mission control computer; communication via HTTP (Hypertext 

Transfer Protocol) was used to link the cameras to mission control. In last year’s case, both the 

mission control computer and networked hardware on the rover are behind NAT (Network 

Address Translation) firewalls. The NAT firewall prevents all incoming connections to all the 

devices. 

B.3.3 – SEM and Locomotion Computers 

In last year’s design, the communications system was put together in more haste than what 

would have been ideal. For one, the mission control operated from a student’s apartment. Also, 

the on-rover router used was a G-type router leading to limited bandwidth. Looking at last year’s 

issues, a lack of bandwidth may have contributed to the issues of last year’s team, such as 

lagging and dropped communications. Additionally, the video feed would be impaired by a low-

resolution, which normally would be used in cases where the bandwidth was limited. To 

counteract these issues, a higher grade router will be used. Last year’s router, the TP-Link TL-

MR3430 (pictured below) was a fine router for home usage, but a higher grade router would do 

the project well. 

 

 

 

Figure 27 -- Communication Between User and Raspberry Pi 

 

 

Figure 28 -- Left: Type G Router  Right: Type N Router 
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The router’s function was so that the user could communicate with the Raspberry Pi computers. 

Raspberry Pi’s are now 3G compatible, but using a router makes the connection between the user 

and the Pi computers more secure. As will be discussed below, we plan on using a 4G network 

for this year’s design. The TP-LINK SafeStream TL-ER6020 Gigabit Dual-WAN VPN Router 

(pictured below) is an ideal router to use with a 4G card. It is a next generation, the N-type. It 

creates a VPN (Virtual Private Network) thus adding more security by securing an IP address, 

and preventing interference from other addresses. Additionally, the router is much more 

powerful, with enough bandwidth to spare.  

B.3.4 – Networks 

In order to further improve the design, some other minor modifications are necessary. This year’s 

team will make the mission control router the DNS-enabled router. Last year, the team did not 

take care to make sure only one router was DNS-enabled. Also, some issues arose that were out 

of the control of the team. The team relied on Verizon’s 3G network as there was a tower near 

the site. Ironically, the 3G network had issues on the day of the competition. This year’s team 

plans to incorporate 4G. While some 3G networks are faster than 4G networks, within a carrier, 

4G always trumps 3G. For instance, Verizon 3G is faster than MetroPCS 4G, but Verizon’s 4G 

is faster than its 3G. Verizon’s 3G network is actually relatively poor when compared to other 

network speeds with download and upload speeds 1.05 and 0.75 Megabits per second (Mbps) 

respectively However, Verizon’s 4G network showcases a vast improvement over its predecessor 

with download and upload speeds of 7.35 and 5.86 Mbps respectively. These speeds are bested 

only by AT&T’s network. Verizon’s network is advantageous in part due to the tower nearby the 

competition site. We plan on using 2 Verizon 4G USB sticks, 1 on the rover, and 1 at mission 

control.   

 

 

Figure 29 -- Verizon 4G USB Stick (left) AT&T 4G USB Stick(right) 

 

We are going to strive for as much redundancy with the platform due to some issues that arose 

last year. The Verizon Network was down that day, much to the team’s dismay. Using AT&T’s 

network is an option we are strongly considering in case Verizon’s network fails this year. We 

will use the same communications model as with the 4G, but we will not utilize it unless 

Verizon’s network fails. This practice ensures we are not sending conflicting commands to the 
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rover, which may cause serious ramifications, such as the robot’s malfunction. Since Houston is 

a major city, using AT&T may very well be the way to go. 

 

B.4 Controls Concept Development 

Last year’s six legged design had the necessary tools for traversing the competition grounds, but 

there is still work to be done to allow the rover to move more freely and efficiently through the 

different terrains. The rover was only able to turn while stationary, and walk directly 

forwards/backwards. 
 

 
Figure 30 – Proposed six legged device. The legs are labeled (and will be referenced as) 0 through 5. 

This year, the team will be attempting to implement a turn while walking function, a turn while 

climbing function, a more precise turning function, and a “lay-down-nudge” function. These will 

all be controlled by a wireless controller instead of the GUI interface which was used last year. 
 

B.4.1 – Turn While Walking 

 

Front 

 

 

 

 

 

When the robot walks in a straight line, the 0, 2, and 4 legs will be coupled together (call them 

set A), sharing the same movements. The 1, 3, and 5 legs will also be coupled (set B), and they 

will move at exactly 180° phase difference from set A. To be precise, this means that while one 

Leg 0 (A) Leg 3 (B) 

Leg 1 (B) Leg 4 (A) 

Leg 2 (A) Leg 5 (B) 

Figure 31 -- Aerial view of the robot to display the leg's labels and their respective groups 
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set is pointing directly downward, in its peak contact with the ground, the other set will be 

directly upright, at its highest point. 
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To understand the locomotion further, one must understand the Buehler clock. The Buehler clock 

describes the relationship between the speed of the leg and its location in its rotation. When any 

given set of legs are on the ground, they must move slower than when they are in the air, so that 

the other legs can “catch” the robot right as they are leaving the ground stage. Figure 13 shows 

this relationship. The slope of the lines describes the speed of the legs rotation, the y axis 

describes the location in the legs rotation, and the x axis describes time. Notice that the legs 

change speeds at T/4 and (3T)/4. Notice that in this image, both sets of legs start and end at 0 and 

2π respectively.  

 

Now that walk is understood, turn while walking must be implemented. One’s immediate 

response to implementing turn while walking is to increase the speed of one side of the legs and 

thus create a turn. This design was considered but quickly failed when it was hypothesized and 

proven that the rover would simply fall over, since the legs would lose their coupling over time. 

The next idea was to adjust the phase at which the left legs differ from the right legs. For 

example, put leg 1 20° ahead of legs 3 and 5, while simultaneously putting leg 4 20° behind legs 

0 and 2. This will cause the left legs (the ones that are ahead) to hit the ground slightly before the 

right legs leave the ground. For the second that the legs are together on the floor, there will be a 

slight turning motion to the right, and then the robot will continue to move forward once the left 

legs catch up (at which point the other set of legs will have lifted into the air). 
 

B.4.2 – Turn While Climbing 

Turning while climbing is very similar to turning while walking, but with an extra hurdle. 

Walking on flat land is simple, if the legs are in phase, they will move forward with no problem. 

However, on a small hill, the rover has a tendency to turn with the hill as it climbs. To adjust for 

this, a separate hill climbing function was created and is currently functioning on the rover.  

This function must now be added to. Just as with the turn while walking, the team wants to make 

the robot more agile when on a hill. It seems likely that adjusting the phase just as was done in 

Figure 32 -- Buehler Clock graph for both sets of legs (Red = A, Black = B) 
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the turn while walking will resolve this issue and become extremely helpful in climbing hills 

quickly. 

B.4.3 – Precision Turns 

 

Currently, precision turns are working, but not for slight turns. The reason for this is that the 

robot is defined to work in “steps”. Every time the precision turn function is called, a number of 

steps must be input to the rover. The robot then takes this many “steps” to that direction, without 

moving forwards or backwards. 

 

Currently, it takes the robot six steps to completely turn around an approximate 180°. This means 

that for each step that the robot is instructed to take; it is currently turning roughly 30°. This is 

great for a machine which wants to turn quickly, but extremely non-ideal for one which wants to 

pick up rocks, and precisely position a gripper to easily pick up those rocks. The turn must be 

worked on so that it can be more precise for angles lower than 30°. 

 

To do this, the robot will have to be programmed to be able to take a “half step”, or maybe even 

a “quarter step”. Currently, a step is counted every single time a set of legs gets off of the floor, 

so every time a set of legs makes a full rotation, it is two steps. This means that part of the 

problem comes from the fact that the legs are long. Downsizing to the smaller machines should 

serve as a partial solution to the problem, but it might not be enough. On a more core level, 

however, there are two options to create a precise precision turn. Steps will either be redefined in 

the current function or a new function will have to be written which can input fractional steps, 

and thus allow the rover to stop its rotation mid-step. 
 

B.4.4 – “Lay-Down-Nudge” Function 

 

A new idea which is going to be attempted this year is to implement a nudge while laid down 

function. Last year’s team discovered that the most efficient way for the rover to pick up objects 

is to lay it down and then operate the arm and gripper. This causes a problem, however, because 

if the robot lies down and is slightly out of position, a complete repositioning of the machine is 

required. This means it has to completely stand up and relocate to a hopefully better position. 
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Figure 33 -- SpaceHex laying down 

 

To combat this, a “nudge” function will be implemented. The rover will very quickly push the 

legs into the ground, creating lift and hopefully pushing the robot backwards. This could also be 

implemented to just the left or right legs, which will allow the robot to turn slightly even though 

it is lying down. 

 

The advantages to this could be incredibly evident, since the team which collects the most rocks 

gets the most points. Last year’s team was only able to collect one rock because of how hard it 

was to correctly position the rover over a rock. 

B.4.5 – Control through Gaming Controller 

 

Using a GUI (graphical user interface) was reasonable for last year’s machine, but this year a 

more user-friendly interface is going to be implemented. All options are being considered, so 

long as it is a wireless controller. Some ideas have been discussed, but the most common ones 

are gaming controllers. 

 

 
Figure 34 -- Common Gaming Controllers 
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The advantage to these types of controllers is extremely evident. There are so many ways which 

these controllers could be of use to the rover. First and foremost, there must be a way to control 

the locomotion of the machine, while simultaneously controlling the arm of the machine. 

 

The current machine is designed to operate in locomotion until a rock is spotted and gone after. 

The machine lies down before the arm is activated. This is a good design, and allows for the 

machine to perform both tasks. On startup, the controller can be in “locomotion mode.” In this 

mode, the left analog sticks will be used to control the robots forward and backward motion, 

while the right analog stick is going to control the left and right motion. This will allow the 

controller to control speed, direction, and intensity of every motion the machine makes. When 

the robot enters “lie down mode” (i.e. after pressing ‘X’), the robot can use the joysticks to 

control the arm. The vast numbers of buttons can allow the robot to perform different tasks such 

as “drop arm” and “nudge backwards”. 

 

The biggest problem with this design is that the current code for the rover isn’t dynamic enough 

for this control mechanism. The robot moves with each command, and does not allow any 

commands to be input until the command finishes its execution. A controller is constantly 

changing commands (with a joystick). This can be worked around by making the code more 

dynamic and allowing commands to change throughout. This is usually easily accomplished by 

enabling interrupts in the code, which will be attempted. 
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Appendix C – Decision Matrices 

C.0 Decision Matrices 
After considering the designs above, the team created the following decision matrices to make 

our selection. 

C.1 Arm Selection 
Table 4 -- Arm Design Decision Matrix 

Robotic Arm 

 Rank Weight 2 DOF 3 DOF w/ 1 

planar 

3 DOF all 

revolute 

   Value Score Value Score Value Score 

Weight 1 0.25 7 0.175 8 0.200 9 0.225 

Size 8 0.02 5 0.010 7 0.014 8 0.016 

Controllability 6 0.06 10 0.060 8 0.048 6 0.036 

Speed 4 0.15 7 0.105 7 0.105 8 0.120 

Reliability 3 0.17 9 0.153 7 0.119 6 0.102 

Autonomous 7 0.04 9 0.036 7 0.028 6 0.024 

Reach 2 0.21 5 0.105 7 0.147 8 0.168 

Cost 5 0.10 8 0.080 7 0.07 6 0.06 

    0.724  0.731  0.751 

Total 0.724 0.731 0.751 

 

Description of Design Factors 

 

Weight – The weight of the overall rover design greatly affects the score teams receive at 

competition. The weight of the arm mechanism therefore has the most weight in our decision 

 

Reach – Once the rover has gotten close to a rock, the amount of reach it has becomes important. 

Being able to grab a rock that is far away from the rover will reduce the time needed to collect 

rock samples. 

 

Reliability – The reliability of the arm is also very important. Several teams, who were selected 

to compete in the competition, could not do so because some part of their system failed the day 

before of the day of competition. 

 

Speed – The rate at which the arm goes from stowed position to the position of the sample and is 

important to improve the overall speed of sample acquisition. 

 

Cost – As a school project, cost is a factor. The more expensive the design, the harder it will be 

to receive the necessary funds to construct the design. 

 

Controllability – The difficulty to move the arm from one point to a new point. The difficulty of 

mapping from robots joints frames to the x y z coordinate frame. 
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The difficulty in making the system autonomous – The difficulty in making the system almost 

completely autonomous. With autonomous control, less work will be required to command the 

arm and acquire the rock samples, saving time on collection. 

 

Size – The overall size of the design needs to fit within certain size requirements. The robotic 

arm cannot exceed these specifications, but as long as the design does, the arm’s size is not 

critical. 

C.2 Gripper Selection 
Table 5 -- Gripper Design Decision Matrix 

Gripper Design 

 Rank Weight Scooper Pincer Complaint 

Finger 

Complaint 

Mesh 

   Value Score Value Score Value Score Value Score 

Weight 6 0.05 3 0.015 7 0.035 5 0.025 3 0.015 

Size 4 0.10 5 0.050 9 0.090 7 0.070 5 0.050 

Speed 7 0.03 7 0.021 3 0.009 4 0.012 5 0.015 

Reliability 3 0.20 7 0.140 3 0.060 3 0.060 5 0.100 

Tolerance 1 0.30 9 0.270 1 0.030 3 0.090 8 0.240 

Precision 2 0.25 1 0.025 9 0.225 9 0.225 7 0.158 

Cost 5 0.07 9 0.063 7 0.049 5 0.035 7 0.049 

           

Total 0.584 0.498 0.517 0.627 

 

Description of Design Factors 

 

Tolerance – Tolerance is the grippers ability to pick up the same rock from multiple different 

positions and orientations 

 

Precision – Precision is the gripper’s ability to selectively pick up a single rock without picking 

up any other material. 

 

Reliability – The Reliability of the gripper is its consistence in working for the same rock and for 

no component on the gripper to fail. 

 

Size – The size of the gripper affects the size of the arm and the motors needed for the arm. 

However, the larger the size, the more area the gripper has to use to grab samples. 

 

Cost – Cost is the difference in cost for the components of the grippers 

 

Weight – Weight is similar to size and affects the size and motors needed for the arm 

mechanism. 

 

Speed – Speed is the amount of time it takes the grippers to close onto a rock and acquire it. 
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Appendix D – Detailed Design and Design for Manufacturing 

D1.0 – SEM Prototyping 
 

 One of the key goals of the project was to develop designs quickly and prototype the 

most viable design concepts. The prototype could then be tested to establish the capabilities and 

weakness of the initial design, which will allow further prototypes to correct for the weakness 

encountered in the initial design without significant investment into a sign design.  

 

 The initial designs show in Figure 19 uses 4 servos to control the various joints of the 

arms, and has each servo placed at the joint it controls. This design was created to reduce the 

difficulty of the control needed to program and control the robotic arm. Servo’s are actuated by 

providing a desired position in the form of a pulse width, then the servo has its own built in 

control to maintain the position. Placing the motors on the joint it will actuate translates to the 

position of the motor being the same as the position of the arm.  

 

 Our initial prototype, shown in Figure 19 utilized servo controlled joints and was built to 

a relative ½ scale of our expected design. The prototype was constructed using ABS plastic 

which was laser cut for rapid manufacturing. The design showed some flaws with the initial 

concept, which were the servos preprogrammed control could not accurately maintain a position 

when it was strained toward the limit of its torque capability. It was evident the torque capability 

of the servos would be insufficient for the full scale robotic arm. 

 

 
Figure 35 -- Initial Design CAD and Prototype 

 The arm was then redesigned to rectify the issues of the initial design. The solutions were 

to use DC motors, which require more complex control algorithms but can produce significantly 

more torque. By using DC motors, the control algorithm can be tuned so the arm will maintain 

the exact desired position in situation which are below the torque limit of the motor. Selecting a 

DC motor for the various joints require analysis to determine the amount of torque necessary for 

each joint while keeping the weight of the arm light. The motor selection is described in section 

D.2.2. The second solution was to move the motor on the elbow joint to the base and use some 

form of linkage or chain drive to actuate the joint. These design changes led to the second 

generation design. 
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Figure 36  -- Second Generation Design 

 Once DC motors were selected and the motor placement was determined, the second-

generation design was created. The scale model showed we needed to reduce the amount of 

weight the motors need to actuate to allow readily available motors to be utilized. The initial 

design used a 3 feet reach, which was designed to require minimal precision of the rover to 

acquire samples, however, the design was shortened to 2 feet to reduce the torque requires at the 

base joint to support and accelerate the arm through its range of motion.  

 

 The design has a chain drive to drive the second joint. A chain drive was selected to 

provide the closest simulation of direct drive. Only the relative sizes of the sprockets, which are 

going to be the same, are needed to be added the position of the motor. A chain drive was 

selected over a belt drive for durability and for the reliability in cold temperatures expected on 

mars. 

 

D1.1 – FEM Analysis 

 

 FEM analysis was used to determine the amount of deflection and the stresses which the 

beams would experience during the competition. The deflection is important in maintaining a 

mapping from the base of the arm to the location of the gripper based on just the positions of the 

motors which will be directly measured using encoders. The FEM analysis is shown below. The 

deflection measured was 0.0036in which is small enough to not affect the ability of the gripper to 

move to a set location. The stress analysis showed the max stress was 309.38 psi which is below 

the modulus of elasticity of Aluminum 6063 which is 10000 ksi. 
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D1.2 – Motor Analysis 

 

 The amount of torque necessary was determined by assuming the arm was in its worst 

case scenario and determining the forces on the arm. The arms were represented by a distributed 

mass, the motors were evaluated as point masses at their location. The equations for the torque at 

any point were then calculated in Matlab and plotted to visualize the torque requirements through 

the entire range of motion. 

 

 The base motors selected were a RE 40 ∅40 mm, Graphite Brushes, 150 Watt with a 

Planetary Gearhead GP 42 C ∅42 mm, 3–15 Nm. This combination of a 170 mNm motor with a 

113:1 planetary gearbox provides allows the motor to provide 15 Nm of torque nominally. The 

expected load determined in the worst case scenario is 10 Nm. Since these motors are going to be 

installed at the base, their weight will not affect the torque requirements. 

 

 The motors for the wrist and the gripper do not require significant torque, the requirement 

determined was 3 kg-cm, but the motor weight will affect the torque of the base motors. 

Therefore, the Pololu 298:1 Micro Metal Gear motor was selected because it was the lightest 

weight motor that could provide the necessary torque.  

 

D2.0 – Gripper Prototyping 
 The work done to prototype the gripper has produced several working prototypes. The 

first generation was a proof of concept which was actuated by hand. It gave us a sense of the 

amount of effort a motor would need to provide and some of the manufacturing issues we would 

face with producing a gripper with compliant materials. The material for the elastic gripper was 

initial chosen to be rubber bands for simplicity. 

 
Figure 37 -- First Generation Gripper Prototype 

 The second generation model was produced using rapid prototyping techniques. 

Cardboard was used as the construction material, for it is free from the local hardware store and 

when paired with hot glue can produce a reasonably strong structure. The prototype used a servo 

mechanism to actuate the gripper and an elastic first aid tape for the elastic material. With this 

gripper, we were able to test the design and see the design pick up rock samples. While the 

prototype was able to pick up rocks, the cardboard caused some issues which were resolved in 

the current prototype. 
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Figure 38 -- Second Generation Gripper Prototype 

  The current gripper prototype, which appears to work as our final version used ABS 

plastic for the frame and linkages. The ABS was used to make gear which keep the linkages at 

the same location through the range of motion. The elastic material was changed to silicon 

rubber, which will remain elastic at the temperatures expected on mars. The design also utilize 

the pololu motor and was shown to prove powerful enough to pick up rocks larger than expected 

at the competition. 

 

 
Figure 39 -- Third Generation Prototype 
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Appendix E – Programming and Control Implementation 

E1.0 –Xpadder 
Once the SDL is imported onto the SD card and implemented, the next step is transferring those 

commands from the keyboard to the actual XBOX controller. Using a free program called 

Xpadder, this is not only possible, but it is easy to implement. 

 

 
Figure 40 -- Example of Xpadder Interface 

 Xpadder is a software application which allows a controller to emulate a keyboard. The 

user must upload a picture of the controller to the program, and then map the buttons to 

whichever keyboard button they wish. The computer will then read the button presses as key 

presses, and thus the computer will act normally as if that button was pressed on the keyboard. 

 

 With the combination of Xpadder and SDL, the rover will be able to take commands 

directly from the XBOX controller. By simply mapping the joystick to the forward, backward, 

left and right buttons on the keyboard, the rover will be able to walk continuously until the 

joystick is released. This will allow for real-time control and a dynamic rover, as intended.  
 

E2.0 – SDL Library 
 Currently, the rover is being controlled through the command prompt on a laptop. While 

this is a functioning design, it is not ideal since there are huge delays between inputs and they are 

not intuitive. To improve the rover’s locomotion and control, an XBOX controller will be 

implemented in order to reduce delays between commands, essentially controlling the rover in 

real-time. 

 

 In order to achieve this, low level keyboard access and event handling are necessary. 

Simple DirectMedia Layer (SDL) is a library written in C which enables both keyboard access 

and event handing to the user. With this, the user will be able to control the rover by simply 

pressing buttons on the keyboard (i.e. holding w will move the rover forward) as opposed to 

typing entire commands to the command prompt. The code will then have to be re-written in 

order to allow for real-time control, which means the implementation of a dynamic function with 

either interrupts or continuous looping of the walk function. 
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Appendix F – Source Code 

F1.0 – Static Switch Main.c 
      1/***********************************************************/ 
  2 #include <stdlib.h> 

  3 #include <stdio.h> 

  4 #include <unistd.h> 

  5 #include <math.h> 

  6 #include "motor.h" 

  7 #include "buehler.h" 

  8 

  9 //void printHelp(); 

 10 void applyHold(int holdPos) 

 11 { 

 12   FILE * fp; 

 13   fp = fopen("/root/src/holdTxt.txt" ,"w"); 

 14   fprintf(fp,"1 %d", holdPos); 

 15   fclose(fp); 

 16 } 

 17 

 18 void rmHold() 

 19 { 

 20   FILE * fp; 

 21   fp = fopen("/root/src/holdTxt.txt","w"); 

 22   fprintf(fp, "0 0"); 

 23   fclose(fp); 

 24   delay(1000); 

 25 } 

 26 

 27 int main(int argc, char* argv[]) 

 28 { 

 29   struct timeval tv = {.tv_sec = 0, .tv_usec = 0}; 

 30   int ipos[6] = {0}, mpos[6] = {0}, duty[6] = {0x00}; 

 31   int rpm,steps,angles,phase_offset,stepPhase_time,i; 

 32   char dir,turn_dir; 

 33 

 34   //Initialize SPI,UART,DecoderRst pin,EmergencyStop pin 

 35   Init(0,8000000,6,5); 

 36 

 37   if(argc == 1) 

 38   { 

 39   //  printHelp(); 

 40     return(0); 
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 41   } 

 42 

 43   else 

 44   { 

 45     rmHold(); 

 46     switch(*(++argv[1])) 

 47     { 

 48       case 'v': printf("Hill Gait\n"); 

 49                 sscanf(argv[2],"%d",&rpm); 

 50                 sscanf(argv[3],"%d",&steps); 

 51                 moove(10,'F','A',OFFSET2); 

 52                 hillGait(rpm,'F',steps); 

 53                 moove(10,'F','A',OFFSET2); 

 54                 applyHold(OFFSET2); 

 55                 break; 

 56 

 57       case 's': printf("LETS CLIMB STAIRS\n"); 

 58                 sscanf(argv[2],"%d",&rpm); 

 59                 sscanf(argv[3],"%d",&steps); 

 60                 //move(10,'F','F',OFFSET3); 

 61                 printf("Finished F\n"); 

 62                 //move(10,'F','M',OFFSET1); 

 63                 printf("Finished M\n"); 

 64                 //move(10,'F','B',OFFSET4); 

 65                 printf("Finished B\n"); 

 66                 stair(rpm,steps); 

 67                 break; 

 68 

 69       case 'q': printf("Turn during Locomtion\n"); 

 70                 sscanf(argv[2],"%d",&rpm); 

 71                 sscanf(argv[3],"%c",&dir); 

 72                 sscanf(argv[4],"%d",&steps); 

 73                 sscanf(argv[5],"%d",&angles); 

 74                 moove(10,'H',1,OFFSET2); 

 75                 walk_turn(rpm,dir,steps,angles,0); 

 76                 moove(10,'F','A',OFFSET1); 

 77                 applyHold(OFFSET1); 

 78                 break; 

 79 

 80       case 'z': printf("Precision Turn\n"); 

 81                 sscanf(argv[2],"%d",&rpm); 

 82                 sscanf(argv[3],"%c",&dir); 

 83                 sscanf(argv[4],"%d",&steps); 

 84 
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 85                 if(dir == 'R') 

 86                   moove(10,'H',1, OFFSET2); 

 87                 else 

 88                   moove(10,'H',0, OFFSET2); 

 89 

 90                 turn(rpm,dir,steps); 

 91                 moove(10,'H','A',OFFSET1); 

 92                 applyHold(OFFSET1); 

 93                 break; 

 94 

 95       case 'w': printf("WALK\n"); 

 96                 sscanf(argv[2],"%d",&rpm); 

 97                 sscanf(argv[3],"%c",&dir); 

 98                 sscanf(argv[4],"%d",&steps); 

 99                 moove(10,'H',1,OFFSET2); 

100                 walk(rpm,dir,steps,0); 

101                 moove(10,'F','A',OFFSET1); 

102 

103                 applyHold(OFFSET1); 

104                 break; 

105 

106       case 't': printf("TURN\n"); 

107                 sscanf(argv[2],"%d",&rpm); 

108                 sscanf(argv[3],"%c",&dir); 

109                 sscanf(argv[4],"%d",&steps); 

110                 moove(10,'H',1,OFFSET2); 

111                 walk(rpm, dir, steps,0); 

112                 moove(10,'F','A',OFFSET1); 

113                 applyHold(OFFSET1); 

114                 break; 

115 

116       case 'c': printf("CALIBRATE\n"); 

117                 duty[0] = 

duty[1]=duty[2]=duty[3]=duty[4]=duty[5] = -3; 

118                 driveAllMotors('B',duty); 

119                 delay(6000); 

120                 stopMotors(); 

121                 break; 

122 

123       case 'u': printf("STAND\n"); 

124                 moove(10,'F','A',OFFSET1); 

125                 applyHold(OFFSET1); 

126                 break; 

127 
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128       case 'l': printf("LIE\n"); 

129                 moove(10,'F','A',OFFSET1); 

130                 moove(5,'F','A',2000); 

131                 break; 

132 

133 //      case 's': printf("ESTOP\n"); 

134 //                stopMotors(); 

135 //                break; 

136 

137       case 'r': printf("RESETDEC\n"); 

138                 resetAllDecoders(); 

139                 break; 

140 

141       case 'h': printf("HOLD\n"); 

142                 applyHold(0); 

143                 break; 

144 

145       case 'b': printf("REMOVE HOLD\n"); 

146                 rmHold(); 

147                 break; 

148 

149       case 'm': printf("POSITION\n"); 

150                 readAllMotorPos(mpos); 

151                 printf("mpos0: %d, mpos1: %d, mpos2: %d, 

mpos3: %d. mpo    s4: %d, mpos5: %d\n", 

mpos[0],mpos[1],mpos[2],mpos[3],mpos[4],mpos[5]); 

152                 break; 

153 

154       case 'x': printf("TEST\n"); 

155                 /*walk(10,'F',3); 

156                 duty[0] = duty[1]=duty[2]=duty[3]=duty[5] = 

0; 

157                 duty[3] = 40; 

158                 driveAllMotors('F',duty); 

159                 delay(4000); 

160 

161                 duty[0] = duty[1]=duty[2]=duty[3]=duty[4] = 

0; 

162                 duty[5] = 40; 

163 

164                 driveAllMotors('F',duty); 

165                 delay(4000); 

166                 duty[0] = 

duty[1]=duty[2]=duty[3]=duty[4]=duty[5] = 0; 
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167                 driveAllMotors('F',duty); 

168                 break; 

169                 */ 

170       default : printf("**Invalid option**\n"); 

171                 break; 

172     } 

173   } 

174   return 0; 

175 } 
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F2.0 – Dynamic Switching Main.c (GET_CH_Test.c) 
  1 #include <stdlib.h> 

  2 #include <stdio.h> 

  3 #include <unistd.h> 

  4 #include "motor.h" 

  5 #include "buehler.h" 

  6 #include <curses.h> 

  7 

  8  void applyHold(int holdPos) 

  9  { 

 10    FILE * fp; 

 11    fp = fopen("/root/src/holdTxt.txt" ,"w"); 

 12    fprintf(fp,"1 %d", holdPos); 

 13    fclose(fp); 

 14  } 

 15 

 16  void rmHold() 

 17  { 

 18    FILE * fp; 

 19    fp = fopen("/root/src/holdTxt.txt","w"); 

 20    fprintf(fp, "0 0"); 

 21    fclose(fp); 

 22    delay(1000); 

 23  } 

 24 

 25 void preprocess() 

 26 { 

 27   struct timeval tv = {.tv_sec = 0, .tv_usec = 0}; 

 28   int ipos[6] = {0}, mpos[6] = {0}, duty[6] = {0x00}; 

 29   Init(0,8000000,6,5); 

 30   rmHold(); 

 31 } 

 32 

 33 int stepcount = 1; 

 34 int oddstep = 0; 

 35 int INIT_STEP = 0; 

 36 

 37 int main() 

 38 { 

 39   initscr(); 

 40   refresh(); 

 41   cbreak(); 

 42   noecho(); 

 43   halfdelay(5); 
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 44   keypad(stdscr,TRUE); 

 45   refresh(); 

 46   endwin(); 

 47   int fish; 

 48   char ch = 'm'; 

 49   int angles = 5; 

 50   int rpm = 20; 

 51   char dir = 'F'; 

 52   int steps = 1; 

 53   int duty[6] = {0x00}; 

 54 

 55   preprocess(); 

 56   resetAllDecoders(); 

 57 

 58   preprocess(); 

 59   while(ch != 27) 

 60   { 

 61      preprocess(); 

 62      initscr(); 

 63      refresh(); 

 64      flushinp(); 

 65      ch = wgetch(stdscr); 

 66      refresh(); 

 67      endwin(); 

 68     switch(ch) 

 69     { 

 70       case 'w': 

 71         // Forward 

 72            if (stepcount % 2 == 0) 

 73             oddstep = 0; 

 74            else 

 75             oddstep = 1; 

 76            initscr(); 

 77            refresh(); 

 78            flushinp(); 

 79            ch = wgetch(stdscr); 

 80            refresh(); 

 81            endwin(); 

 82            //printf("BEFORE RESET"); 

 83            walk(rpm,'F',0, oddstep); 

 84            //printf("AFTER RESET"); 

 85            while (ch == 'w') 

 86            { 

 87              //printf("BEFORE: Oddstep is: %d\n",oddstep); 
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 88              //if (oddstep == 0) 

 89               walk(rpm,'F',steps/*1*/,oddstep); 

 90              //else 

 91               //walk(rpm,'F',steps,1); 

 92              ++stepcount; 

 93              //printf("Step count is %d\n", stepcount); 

 94              printf("Inside the w while loop\n"); 

 95              initscr(); 

 96              refresh(); 

 97              flushinp(); 

 98              ch = wgetch(stdscr); 

 99              refresh(); 

100              endwin(); 

101           } 

102           //printf("Outside the w while loop\n"); 

103       break; 

104 

105       case 's': 

106         // Backwards 

107         if (stepcount % 2 == 0) 

108           oddstep = 0; 

109         else 

110           oddstep = 1; 

111         //printf("Oddsteps is %d\n",oddstep); 

112         initscr(); 

113         refresh(); 

114         flushinp(); 

115         ch = wgetch(stdscr); 

116         refresh(); 

117         endwin(); 

118         walk(rpm,'F',0,oddstep); 

119         while(ch == 's') 

120         { 

121           //if (oddstep == 0) 

122             walk(rpm,'B',steps,oddstep); 

123           //else 

124             //walk(rpm,'B',steps,1); 

125           ++stepcount; 

126           //printf("Step count is: %d\n",stepcount); 

127           printf("Inside the s while loop\n"); 

128           initscr(); 

129           refresh(); 

130           flushinp(); 

131           ch = wgetch(stdscr); 
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132           refresh(); 

133           endwin(); 

134         } 

135       break; 

136 

137       case 'a': 

138       //left 

139         if (stepcount % 2 == 0) 

140           oddstep = 0; 

141         else 

142           oddstep = 1; 

143         initscr(); 

144         refresh(); 

145         flushinp(); 

146         ch = wgetch(stdscr); 

147         refresh(); 

148         endwin(); 

149         walk(rpm,'F',0,0); 

150         while (ch == 'a') 

151         { 

152           walk(rpm,'L',steps,oddstep); 

153           ++stepcount; 

154           initscr(); 

155           refresh(); 

156           printw("Inside the a while loop\n"); 

157           flushinp(); 

158           ch = wgetch(stdscr); 

159           refresh(); 

160           endwin(); 

161         } 

162         break; 

163 

164       case 'd': 

165       //right 

166         if (stepcount % 2 == 0) 

167           oddstep = 0; 

168         else 

169           oddstep = 1; 

170         initscr(); 

171         refresh(); 

172         flushinp(); 

173         ch = wgetch(stdscr); 

174         refresh(); 

175         endwin(); 



Team 11 - 10 
 
 

 

176 

177         walk(rpm,'F',0,0); 

178         while (ch == 'd') 

179         { 

180           walk(rpm,'R',steps,oddstep); 

181           ++stepcount; 

182           initscr(); 

183           refresh(); 

184           printw("Inside the d while loop\n"); 

185           flushinp(); 

186           ch = wgetch(stdscr); 

187           refresh(); 

188           endwin(); 

189         } 

190       break; 

191 

192       case 'u': 

193         // Speed UP 

194         printf("Previous RPM = %d\n", rpm); 

195         if(rpm < 26) 

196           rpm += 5; 

197         else 

198           rpm = 30; 

199         printf("Current RPM = %d\n", rpm); 

200       break; 

201 

202       case 'j': 

203         // Speed DOWN 

204         printf("Previous RPM = %d\n", rpm); 

205         if(rpm > 14) 

206           rpm -= 5; 

207         else 

208           rpm = 10; 

209         printf("Current RPM = %d\n",rpm); 

210       break; 

211 

212       case 'i': 

213         // Angles up 

214         printf("Previous angles = %d\n", angles); 

215         if (angles < 10) 

216           ++angles; 

217         else 

218           angles = 10; 

219         printf("Current Angles = %d\n",angles); 
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220         break; 

221 

222       case 'k': 

223         // Angles Down 

224         printf("Previous angles = %d\n",angles); 

225         if (angles > 0) 

226           --angles; 

227         else 

228           angles = 0; 

229         printf("Current Angles = %d\n",angles); 

230         break; 

231 

232       case 'q': 

233         // Turn while walking - Left 

234         if (stepcount % 2 == 0) 

235           oddstep = 0; 

236         else 

237           oddstep = 1; 

238         //printf("Oddsteps is %d\n",oddstep); 

239         initscr(); 

240         refresh(); 

241         flushinp(); 

242         ch = wgetch(stdscr); 

243         refresh(); 

244         endwin(); 

245         walk_turn (rpm,dir,0,0,oddstep); 

246         while (ch == 'q') 

247         { 

248           walk_turn(rpm,'L',steps,angles,oddstep); 

249           ++stepcount; 

250           initscr(); 

251           refresh(); 

252           printw("Inside the q while loop\n"); 

253           flushinp(); 

254           ch = wgetch(stdscr); 

255           refresh(); 

256           endwin(); 

257         } 

258         if (stepcount % 2 == 0) 

259           oddstep = 0; 

260         else 

261           oddstep = 1; 

262         if (oddstep == 0) 

263         { 
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264           moove(10,'F',1,OFFSET2); 

265           moove(10,'H',0,OFFSET1); 

266         } 

267         else 

268         { 

269           moove(10,'F',1,OFFSET1); 

270           moove(10,'H',0,OFFSET2); 

271         } 

272       break; 

273 

274       case 'e': 

275         // Turn while walking - Right 

276         if (stepcount % 2 == 0) 

277           oddstep = 0; 

278         else 

279           oddstep = 1; 

280         //printf("Oddsteps is %d\n",oddstep); 

281         initscr(); 

282         refresh(); 

283         flushinp(); 

284         ch = wgetch(stdscr); 

285         refresh(); 

286         endwin(); 

287         walk_turn(rpm,dir,0,0,oddstep); 

288         while (ch == 'e') 

289         { 

290           walk_turn(rpm,'R',steps,angles,oddstep); 

291           ++stepcount; 

292           initscr(); 

293           refresh(); 

294           printw("inside the e while loop\n"); 

295           flushinp(); 

296           ch = wgetch(stdscr); 

297           refresh(); 

298           endwin(); 

299         } 

300         if (stepcount % 2 == 0) 

301           oddstep = 0; 

302         else 

303           oddstep = 1; 

304         if (oddstep == 0) 

305         { 

306           moove(10,'H',1,OFFSET2); 

307           moove(10,'F',0,OFFSET1); 
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308         } 

309         else 

310         { 

311           moove(10,'H',1,OFFSET1); 

312           moove(10,'F',0,OFFSET2); 

313         } 

314       break; 

315 

316       case 'c': 

317         // EZ Calibrate 

318         duty[0] = duty[1] = duty[2] = duty[3] = duty[4] = 

duty[5] = -3; 

319         while (ch == 'c') 

320         { 

321           driveAllMotors('B',duty); 

322           delay(2000); 

323           stopMotors(); 

324           initscr(); 

325           refresh(); 

326           printw("Inside the c while loop\n"); 

327           flushinp(); 

328           ch = wgetch(stdscr); 

329           refresh(); 

330           endwin(); 

331         } 

332         resetAllDecoders(); 

333       break; 

334 

335       case 'l': 

336         // Lie Down 

337         moove(10,'F','A',OFFSET1); 

338         moove(5,'F','A',2000); 

339         initscr(); 

340         refresh(); 

341         flushinp(); 

342         ch = wgetch(stdscr); 

343         refresh(); 

344         endwin(); 

345         while((ch != 'l') && (ch != 27)) 

346         { 

347           printf("Inside the l while loop, this is ch: 

%c\n", ch); 

348           initscr(); 

349           refresh(); 
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350           flushinp(); 

351           ch = wgetch(stdscr); 

352           refresh(); 

353           endwin(); 

354         } 

355       break; 

356 

357       default: 

358         // Move back to stand 

359         if (stepcount % 2 == 0) 

360           oddstep = 0; 

361         else 

362           oddstep = 1; 

363 

364         moove(10,'F','A',OFFSET1); 

365         stepcount = 0; 

366         while (ch != 'l' && ch != 'c' && ch != 'w' && ch != 

's' && ch !    = 27 && ch != 'a' && ch != 'd' && ch != 'u' && ch 

!= 'j' && ch != 'i' &    & ch != 'k' && ch != 'q' && ch != 'e') 

367         { 

368           hold(OFFSET1); 

369           initscr(); 

370           refresh(); 

371           flushinp(); 

372           ch = wgetch(stdscr); 

373           refresh(); 

374           endwin(); 

375         } 

376         if (ch != 27 && ch != 'u' && ch != 'j' && ch != 'i' 

&& ch != 'k    ' && ch != 'c' && ch != 'l') 

377         { 

378           moove(10,'H',1,OFFSET2); 

379         } 

380       break; 

381     } 

382   } 

383   refresh(); 

384   endwin(); 

385   printf("Exiting the program peacefully human\n"); 

386   return 0; 

387 

388 } 

389 
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F3.0 – Buehler.h 
  1 

/*************************************************************/ 

  2 #ifndef BUEHLER_H 

  3 #define BUEHLER_H 

  4 

  5 #include <stdio.h> 

  6 #include <stdlib.h> 

  7 #include <sys/time.h> 

  8 #include <curses.h> 

  9 

 10 #define OFFSET1 33852       //Offset for even triplet 

 11 #define OFFSET3 22852       //OFFSET TEST 

 12 #define OFFSET4 40852       //OFFSET TEST 

 13 #define OFFSET2 12415       //Offset for odd triplet 

 14 #define BOUND 50 

 15 

 16 struct timeval walks_turn_buehler(int rpm, char dir, int* 

pos, int angl    es, int stepcount); 

 17 struct timeval stair_buehler(int rpm, int* pos); 

 18 //Caculates the ideal Position 

 19 struct timeval buehler(int rpm, char dir, int* pos, int 

oddstepss) 

 20 { 

 21 //  printf("IN BUEHLER = %d\n",oddstepss); 

 22   static struct timeval startTime = {.tv_sec = -1, .tv_usec 

= -1}; 

 23   struct timeval currTime; 

 24   static int buehlerPeriod; 

 25   static int T1,T2; 

 26   int P1,P2; 

 27 

 28   //Initialize function if its the first call in the loop 

 29   if(startTime.tv_sec == -1) 

 30   { 

 31     //Get start time 

 32     gettimeofday(&startTime,NULL); 

 33 

 34     //Calculate buehler period 

 35     buehlerPeriod = (int) (((float)(60)/rpm)*1000000); 

 36 

 37     //Calculate transition points 

 38     T1 = (int) ((float)(buehlerPeriod)/4); 

 39     T2 = buehlerPeriod - T1; 
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 40   } 

 41 

 42 /*if (dir == 'U') 

 43   { 

 44     startTime.tv_sec = currTime.tv_sec; 

 45     startTime.tv_usec = currTime.tv_usec; 

 46   } 

 47 */ 

 48   //Get current time 

 49   gettimeofday(&currTime, NULL); 

 50 

 51 

 52 

 53   if (dir == 'U') 

 54   { 

 55     startTime = currTime; 

 56     startTime.tv_sec = currTime.tv_sec; 

 57     startTime.tv_usec = currTime.tv_usec; 

 58   } 

 59 

 60 

 61   //Caculate the current buehler phasor 

 62   unsigned long long buehlerPhase = (unsigned long long) 

((currTime.tv_    sec - startTime.tv_sec)*1000000 + 

 63                                     (currTime.tv_usec - 

startTime.tv_us    ec)) % buehlerPeriod; 

 64   //printf("buehlerPeriod : %d, beuhlerPhase %d startTime %f 

currTime %    f\n", buehlerPeriod, buehlerPhase, 

startTime.tv_usec, currTime.tv_usec/    *Int*/); 

 65   //printf("before IF %d\n", oddstepss); 

 66   if (oddstepss == 1 && dir != 'U') 

 67   { 

 68     //printf("You wrong%d\n", oddstepss); 

 69     buehlerPhase = (buehlerPhase + (buehlerPeriod/2)) % 

buehlerPeriod; 

 70   } 

 71 //  printf("Buehler/2 = %d, buehlerPhase = %d, oddstep = 

%d\n", (buehle    rPeriod/2), buehlerPhase, oddstepss); 

 72 //  printf("buehlerPeriod : %d, beuhlerPhase %d startTime %f 

currTime %    f\n", buehlerPeriod, buehlerPhase, 

startTime.tv_usec, currTime.tv_usec/    *Int*/); 

 73   //Get positions of both buehler cycles 

 74   //printf("after IF %d\n", oddstepss); 

 75   /*if (oddstep == 0) 
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 76   {*/ 

 77     if(buehlerPhase <= T1) 

 78     { P1 = ((int) 

(((float)(1)*NUM_POS*buehlerPhase)/(3*buehlerPeriod))    ) % 

NUM_POS; 

 79       P2 = ((int) 

(((float)(5)*NUM_POS*buehlerPhase)/(3*buehlerPeriod))    ) % 

NUM_POS; } 

 80     else if (buehlerPhase < T2) 

 81     { P1 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T1))/(3*buehlerPe    riod)) + ((float)(1)*NUM_POS)/12)) % 

NUM_POS; 

 82       P2 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T1))/(3*buehlerPe    riod)) + ((float)(5)*NUM_POS)/12)) % 

NUM_POS; } 

 83     else 

 84     { P1 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T2))/(3*buehlerPe    riod)) + ((float)(11)*NUM_POS)/12)) % 

NUM_POS; 

 85       P2 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T2))/(3*buehlerPe    riod)) + ((float)(07)*NUM_POS)/12)) % 

NUM_POS; } 

 86   //} 

 87   /*else 

 88   { 

 89     if(buehlerPhase <= T1) 

 90       { P2 = ((int) 

(((float)(1)*NUM_POS*buehlerPhase)/(3*buehlerPeriod    ))) % 

NUM_POS; 

 91         P1 = ((int) 

(((float)(5)*NUM_POS*buehlerPhase)/(3*buehlerPeriod    ))) % 

NUM_POS; } 

 92       else if (buehlerPhase < T2) 

 93       { P2 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T1))/(3*buehler    Period)) + ((float)(1)*NUM_POS)/12)) % 

NUM_POS; 

 94         P1 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T1))/(3*buehler    Period)) + ((float)(5)*NUM_POS)/12)) % 

NUM_POS; } 

 95       else 

 96       { P2 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T2))/(3*buehler    Period)) + ((float)(11)*NUM_POS)/12)) % 

NUM_POS; 
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 97         P1 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T2))/(3*buehler    Period)) + ((float)(07)*NUM_POS)/12)) % 

NUM_POS; } 

 98   }*/ 

 99   //printf("buehlerPeriod: %d, buehlerPhase: %llu, T1: %d, 

T2: %d, iPos    [0]: %d, iPos[1]: %d\n",buehlerPeriod, 

buehlerPhase, T1, T2, pos[0], po    s[1]); 

100 

101   //Adjust position with offset and direction 

102   if(dir == 'B') 

103   { pos[0] = pos[2] = pos[4] = NUM_POS - (P1 + (NUM_POS - 

OFFSET1)) % N    UM_POS; 

104     pos[1] = pos[3] = pos[5] = NUM_POS - (P2 + (NUM_POS - 

OFFSET2)) % N    UM_POS; } 

105   else if(dir == 'R') 

106   { pos[0] = pos[2] = (P1 + OFFSET1) % NUM_POS; 

107     pos[1] = (P2 + OFFSET2) % NUM_POS; 

108     pos[3] = pos[5] = NUM_POS - (P2 + (NUM_POS - OFFSET2)) % 

NUM_POS; 

109     pos[4] = NUM_POS - (P1 + (NUM_POS - OFFSET1)) % NUM_POS;  

} 

110   else if(dir == 'L') 

111   { pos[0] = pos[2] = NUM_POS - (P1 + (NUM_POS - OFFSET1)) % 

NUM_POS; 

112     pos[1] = NUM_POS - (P2 + (NUM_POS - OFFSET2)) % NUM_POS; 

113     pos[3] = pos[5] = (P2 + OFFSET2) % NUM_POS; 

114     pos[4] = (P1 + OFFSET1) % NUM_POS; } 

115   else 

116   { pos[0] = pos[2] = pos[4] = (P1 + OFFSET1) % NUM_POS; 

117     pos[1] = pos[3] = pos[5] = (P2 + OFFSET2) % NUM_POS; 

118   } 

119 

120   return(currTime); 

121 } 

122 

123 //Walking Algorithm 

124 void walk(int rpm, char dir, int numSteps, int oddsteps) 

125 { 

126   //printf("AFTER: Oddsteps is %d\n",oddsteps); 

127   struct timeval tv = {.tv_sec = 0, .tv_usec = 0}; 

128   int ipos[6] = {0}, mpos[6] = {0}, duty[6] = {0}, 

done[6]={0}; 

129   int stepNum = 0, lpos = 0; 

130 
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131   if (numSteps == 0) 

132       dir = 'U'; 

133 

134   if((dir=='L') || (dir=='B')) 

135     numSteps = numSteps; 

136   else if (dir == 'U') 

137     tv = buehler(rpm,dir,ipos,oddsteps); 

138   else 

139     numSteps = numSteps+1; 

140 

141   //Walk numSteps 

142   while(stepNum < numSteps) 

143   { 

144   // if (numSteps == 1) 

145   //    dir = 'U'; 

146     tv = buehler(rpm,dir,ipos,oddsteps); 

147     readAllMotorPos(mpos); 

148 

149     //printf("Init Pos = %d\n", *ipos); 

150     //printf("Motor Pos = %d\n", *mpos); 

151 

152 

153 

154     PD(&tv,ipos,mpos,duty); 

155     driveAllMotors('H',duty); 

156 

157 

158     if((dir=='L') || (dir=='B')) 

159     { 

160       if((((OFFSET1 > (*ipos)) && (lpos >= OFFSET1))) || 

((OFFSET2 > (*    ipos)) && (lpos >= OFFSET2))) 

161         stepNum++; 

162       lpos = *ipos; 

163     } 

164     else 

165     { 

166       if((((OFFSET1 < (*ipos)) && (lpos <= OFFSET1))) || 

((OFFSET2 < (*    ipos)) && (lpos <= OFFSET2))) 

167         stepNum++; 

168       lpos = *ipos; 

169     } 

170 //    printf("Init Pos = %d\n", *ipos); 

171 //    printf("Motor Pos = %d\n", *mpos); 

172   //  printf("NumSteps = %d\n",numSteps); 
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173   //  printf("stepNum = %d\n",stepNum); 

174   } 

175 

176   //Ensure motors are stopped 

177   stopMotors(); 

178   return; 

179 } 

180 

181 //Ideal follower for moving legs angles less than 2*pi 

182 struct timeval follower(int rpm, char dir, char legs, int 

flag, int* sp    os, int* pos) 

183 { 

184   static struct timeval startTime = {.tv_sec = -1, .tv_usec 

= -1}; 

185   struct timeval currTime; 

186   static int period; 

187   int cpos; 

188 

189   //Get start time if not initialized 

190   if((startTime.tv_sec == -1) || (flag == 1)) 

191   { 

192     gettimeofday(&startTime,NULL); 

193     period = (int) (((float)(60)/rpm)*1000000); 

194   } 

195 

196   //Get current time and set all positions to ideal start 

197   gettimeofday(&currTime, NULL); 

198 

199   //Calculate current phase position 

200   unsigned long long phase = (unsigned long long) 

((currTime.tv_sec - s    tartTime.tv_sec)*1000000 + 

201                                                   

(currTime.tv_usec - s    tartTime.tv_usec)) % period; 

202   cpos = (int) ((((float)(1)*NUM_POS*phase)/(period))) % 

NUM_POS; 

203 

204   //Calculate position with start offset and proper 

direction for all l    egs 

205   int i; 

206   for(i = 0; i < NUM_MOTORS; i++) 

207     if(dir == 'F') 

208       pos[i] = (spos[i] + cpos) % NUM_POS; 

209     else 
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210       pos[i] = NUM_POS - (cpos + (NUM_POS - spos[i])) % 

NUM_POS; 

211 

212   //If only 1 triplet is being driven zero the other triplet 

213   if(legs == 0) 

214     i = 1; 

215   else 

216     i = 0; 

217 

218   if (legs == 'F') 

219   { 

220     pos[1] = spos[1]; 

221     pos[2] = spos[2]; 

222     pos[4] = spos[4]; 

223     pos[5] = spos[5]; 

224   } 

225   else if (legs == 'M') 

226   { 

227     pos[0] = spos[0]; 

228     pos[2] = spos[2]; 

229     pos[3] = spos[3]; 

230     pos[5] = spos[5]; 

231   } 

232   else if (legs == 'B') 

233   { 

234     pos[1] = spos[1]; 

235     pos[3] = spos[3]; 

236     pos[4] = spos[4]; 

237     pos[0] = spos[0]; 

238   } 

239   else if(legs != 'A') 

240     for(i; i < NUM_MOTORS; i+=2) 

241       pos[i] = spos[i]; 

242 

243   return(currTime); 

244 } 

245 

246 

247 void hillGait(int rpm, char dir, int numSteps) 

248 { 

249   struct timeval tv = {.tv_sec = 0, .tv_usec = 0}; 

250   int ipos[6] = {0}, mpos[6] = {0}, spos[6] = {0}, duty[6] = 

{0}, done[    6] = {0}; 

251   int stepNum = 0, lpos = 0; 
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252 

253   readAllMotorPos(spos); 

254   follower(rpm,dir,'A',1,spos,ipos); 

255 

256   //Walk numSteps 

257   while(stepNum < numSteps) 

258   { 

259     tv = follower(rpm,dir,'A',0,spos,ipos); 

260     ipos[1] = spos[1]; 

261     ipos[4] = spos[4]; 

262     readAllMotorPos(mpos); 

263     PD(&tv,ipos,mpos,duty); 

264     driveAllMotors('H',duty); 

265 

266     if((((OFFSET1 < (*ipos)) && (lpos < OFFSET1)))) //|| 

((OFFSET2 < (*    ipos)) && (lpos <= OFFSET2))) 

267       stepNum++; 

268     lpos = *ipos; 

269   } 

270 

271   return; 

272 } 

273 

274 void moove(int rpm, char dir, char legs, int epos) 

275 { 

276   int ipos[6] = {0}, mpos[6] = {0}, spos[6] = {0}, duty[6] = 

{0}, done[    6] = {0}; 

277   struct timeval tv = {.tv_sec = 0, .tv_usec = 0}; 

278   int numMotors = 0, numDone = 0, i = 0; 

279 

280   if(legs == 'A') 

281     numMotors = 6; 

282   else if((legs == 'F') || (legs == 'M') || (legs == 'B')) 

283     numMotors = 2; 

284   else if((legs == 1) || (legs == 0)) 

285     numMotors = 3; 

286 

287   readAllMotorPos(spos); 

288   follower(rpm,dir,legs,1,spos,ipos); 

289   while(numDone < numMotors) 

290   { 

291     tv = follower(rpm,dir,legs,0,spos,ipos); 

292     readAllMotorPos(mpos); 

293 
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294     //Check  to see which motors have finished 

295     for(i = 0; i < NUM_MOTORS; i++) 

296     { 

297       if((mpos[i] > epos - 1500 /* 500*/) && (mpos[i] < epos 

+ 1500 /*     500*/)) 

298         if(done[i] == 0) 

299         { 

300           done[i] = 1; 

301           numDone++; 

302         } 

303       if(done[i] == 1) 

304         ipos[i] = epos; 

305 

306 //      printf("Motor Pos(%d) = %d\n", i, *(mpos+i)); 

307     } 

308     //printf("Init Pos = %d\n", *(ipos+1)); 

309     //printf("Motor Pos(%d) = %d\n", i, *(mpos+i)); 

310 

311     //Drive Motors that havent finished 

312     PD(&tv,ipos,mpos,duty); 

313 /*    int ol; 

314     for (ol = 0; ol < 6; ol++) 

315       printf("duty: %d\n", duty[ol]); 

316 */ 

317     driveAllMotors('H',duty); 

318   } 

319   //Ensure motors are stopped 

320   stopMotors(); 

321 } 

322 

323 

/***************************************************************

*******    **************** 

324                                 HOLD 

325 

****************************************************************

*******    ***************/ 

326 

327 void hold(int hpos) 

328 { 

329   int iPos[6] = {hpos,hpos,hpos,hpos,hpos,hpos}; 

330   struct timeval tv = {.tv_sec = 0, .tv_usec = 0}; 

331   int mpos[6] = {0}; 

332   int duty[6] = {0}; 
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333   int i = 0; 

334 

335   while(i < 100) 

336   { 

337     readAllMotorPos(mpos); 

338     PD(&tv,iPos,mpos,duty); 

339     driveAllMotors('H',duty); 

340     delay(20); // leave delay 20 not having it does not 

improve the hol    d function 

341     i++; 

342   } 

343 } 

344 

345 void turn(int rpm,char dir, int numSteps) 

346 { 

347   int ipos[6] = {0}, mpos[6] = {0}, spos[6] = {0}, duty[6] = 

{0}, done[    6] = {0}; 

348   struct timeval tv = {.tv_sec = 0, .tv_usec = 0}; 

349   int numMotors = 3, numDone = 0, i = 0, tripod =0; 

350 

351   int stepNum = 0, lpos = 0; 

352 

353   if(dir == 'R') 

354   { 

355     tripod = 1; 

356     i = 3; 

357   } 

358 

359   readAllMotorPos(spos); 

360   follower(rpm,dir,tripod,1,spos,ipos); 

361 

362   //Walk numSteps 

363   while(stepNum < numSteps) 

364   { 

365     tv = follower(rpm,dir, tripod,0,spos,ipos); 

366     readAllMotorPos(mpos); 

367 

368     if(dir == 'R') 

369       ipos[1] = OFFSET2;//mpos[1]; 

370     else 

371       ipos[4] = OFFSET2;//mpos[4]; 

372 

373     PD(&tv,ipos,mpos,duty); 

374     driveAllMotors('H',duty); 
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375 

376     if((OFFSET1 < (ipos[i])) && (lpos < OFFSET1)) 

377       stepNum++; 

378     lpos = ipos[i]; 

379   } 

380 

381   return; 

382 } 

383 

384 

385 struct timeval turn_buehler(int rpm, char dir, int* pos, int 

phase_off,     int stepPhaseTime) 

386 { 

387   static struct timeval startTime = {.tv_sec = -1, .tv_usec 

= -1}; 

388   struct timeval currTime; 

389   static int buehlerPeriod; 

390   static int T1_1,T1_2,T2_1,T2_2; 

391   int P1,P2; 

392 

393   //Initialize function if its the first call in the loop 

394   if(startTime.tv_sec == -1) 

395   { 

396     //Get start time 

397     gettimeofday(&startTime,NULL); 

398 

399     //Calculate buehler period 

400     buehlerPeriod = (int) (((float)(60)/rpm)*1000000); 

401 

402     //Calculate transition points 

403     T1_1 = (int) ((float)(buehlerPeriod)/4) + stepPhaseTime; 

404     T2_1 = buehlerPeriod - T1_1; 

405 

406     T1_2 = (int) ((float)(buehlerPeriod)/4) - stepPhaseTime; 

407     T2_2 = buehlerPeriod - T1_2; 

408 

409   } 

410 

411   //Get current time 

412   gettimeofday(&currTime, NULL); 

413 

414   //Caculate the current buehler phasor 

415   unsigned long long buehlerPhase = (unsigned long long) 

((currTime.tv_    sec - startTime.tv_sec)*1000000 + 
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416                                     (currTime.tv_usec - 

startTime.tv_us    ec)) % buehlerPeriod; 

417   //printf("buehlerPeriod : %d, beuhlerPhase %d startTime %d 

currTime %    d\n", buehlerPeriod, buehlerPhase, startTime, 

currTimeInt); 

418 

419   //Get positions of both buehler cycles 

420   if(buehlerPhase <= T1_1) 

421   { P1 = ((int) 

(((float)(1)*NUM_POS*buehlerPhase)/(3*buehlerPeriod)))     % 

NUM_POS; 

422     P2 = ((int) 

(((float)(5)*NUM_POS*buehlerPhase)/(3*buehlerPeriod)))     % 

NUM_POS; } 

423   else if (buehlerPhase < T2_1) 

424   { P1 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T1_1))/(3*buehlerPe    riod)) + ((float)(1)*NUM_POS)/12)) % 

NUM_POS; 

425     P2 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T1_1))/(3*buehlerPe    riod)) + ((float)(5)*NUM_POS)/12)) % 

NUM_POS; } 

426   else 

427   { P1 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T2_1))/(3*buehlerPe    riod)) + ((float)(11)*NUM_POS)/12)) % 

NUM_POS; 

428     P2 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T2_1))/(3*buehlerPe    riod)) + ((float)(07)*NUM_POS)/12)) % 

NUM_POS; } 

429 

430   //printf("buehlerPeriod: %d, buehlerPhase: %llu, T1: %d, 

T2: %d, iPos    [0]: %d, iPos[1]: %d\n",buehlerPeriod, 

buehlerPhase, T1, T2, pos[0], po    s[1]); 

431 

432   //Adjust position with offset and direction 

433   if(dir == 'B') 

434   { pos[0] = pos[2] = pos[4] = NUM_POS - (P1 + (NUM_POS - 

OFFSET1)) % N    UM_POS; 

435     pos[1] = pos[3] = pos[5] = NUM_POS - (P2 + (NUM_POS - 

OFFSET2)) % N    UM_POS; } 

436   else 

437   { pos[0] = pos[2] = pos[4] = (P1 + OFFSET1) % NUM_POS; 

438     pos[1] = pos[3] = pos[5] = (P2 + OFFSET2) % NUM_POS; } 

439 

440   return(currTime); 



Team 11 - 27 
 
 

 

441 } 

442 

443 void walk_turn(int rpm, char dir, int numSteps, int angles, 

int oddstep    s/* int phase_off, int stepPhaseTime, char 

turn_dir*/) 

444 { 

445   struct timeval tv = {.tv_sec = 0, .tv_usec = 0}; 

446   int ipos[6] = {0}, mpos[6] = {0}, duty[6] = {0}, 

done[6]={0}; 

447   int stepNum = 0, lpos = 0; 

448 

449   //if (dir != 'L' && dir != 'R') 

450   //{ 

451   //  printf("INCORRECT DIRECTION L OR R"); 

452   //  return; 

453   //} 

454 

455   if (numSteps == 0) 

456     dir = 'U'; 

457 

458   //if (dir == 'R') 

459   if (dir == 'U') 

460     tv = walks_turn_buehler(rpm,dir,ipos,angles,oddsteps); 

461   else 

462     numSteps = numSteps + 1; 

463   //else 

464     //numSteps = numSteps; 

465 

466   while(stepNum < numSteps) 

467   { 

468     tv = walks_turn_buehler(rpm,dir,ipos,angles,oddsteps); 

469     readAllMotorPos(mpos); 

470     PD(&tv,ipos,mpos,duty); 

471     driveAllMotors('H',duty); 

472 

473    //printf("Desired = %d, Acutual = %d\n",ipos[4], 

mpos[4]); 

474     if(dir=='L') 

475     { 

476       if((((OFFSET1 < (*(ipos+3))) && (lpos <= OFFSET1))) || 

((OFFSET2     < (*(ipos+3))) && (lpos <= OFFSET2))) 

477         stepNum++; 

478       lpos = *(ipos+3); 

479     } 
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480     else 

481     { 

482       if((((OFFSET1 /*>*/< (*(ipos/* + 3*/))) && (lpos 

/*>*/<= OFFSET1)    )) || ((OFFSET2 /*>*/< (*(ipos/* + 3*/))) && 

(lpos /*>*/<= OFFSET2))) 

483         stepNum++/* = stepNum + 2*/; 

484       lpos = *(ipos/* + 3*/); 

485     } 

486 

487 /************** 

488     else 

489     { 

490       if((((OFFSET1 < (*ipos)) && (lpos <= OFFSET1))) || 

((OFFSET2 < (*    ipos)) && (lpos <= OFFSET2))) 

491         stepNum++; 

492      lpos = *ipos; 

493     } 

494 *************/ 

495   } 

496   //printf("Desired = %d, Acutual = %d\n",ipos[0], mpos[0]); 

497   //Ensure motors are stopped 

498   stopMotors(); 

499   return; 

500 } 

501 

502 struct timeval walks_turn_buehler(int rpm, char dir, int* 

pos, int angl    es,  int oddstepss) 

503 { 

504 //  printf("EnteringBuehler"); 

505   static struct timeval startTime = {.tv_sec = -1, .tv_usec 

= -1}; 

506   struct timeval currTime; 

507   static int buehlerPeriod; 

508   static int T1, T2; 

509   int P1, P2; 

510 

511   if (angles < 0) 

512     angles = 0; 

513   else if (angles > 10) 

514     angles = 10; 

515   else 

516   {} 

517 

518   if(startTime.tv_sec == -1) 
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519   { 

520     gettimeofday(&startTime,NULL); 

521     buehlerPeriod = (int) (((float)(60)/rpm)*1000000); 

522     T1 = (int) ((float)(buehlerPeriod)/4); 

523     T2 = buehlerPeriod - T1; 

524   } 

525 

526   gettimeofday(&currTime, NULL); 

527 

528   if (dir == 'U') 

529   { 

530     startTime = currTime; 

531     startTime.tv_sec = currTime.tv_sec; 

532     startTime.tv_usec = currTime.tv_usec; 

533   } 

534 

535   unsigned long long buehlerPhase = (unsigned long long) 

((currTime.tv_    sec - startTime.tv_sec)*1000000 + 

536                                     (currTime.tv_usec - 

startTime.tv_us    ec)) % buehlerPeriod; 

537 

538   if (oddstepss == 1 && dir != 'U') 

539   { 

540     buehlerPhase = (buehlerPhase + (buehlerPeriod/2)) % 

buehlerPeriod; 

541   } 

542 

543   //printf("buehlerPeriod : %d, beuhlerPhase %d startTime %d 

currTime %    d\n", buehlerPeriod, buehlerPhase, startTime, 

currTime/*Int*/); 

544 

545   if (buehlerPhase <= T1) 

546   { P1 = ((int) 

(((float)(1)*NUM_POS*buehlerPhase)/(3*buehlerPeriod)))     % 

NUM_POS; 

547     P2 = ((int) 

(((float)(5)*NUM_POS*buehlerPhase)/(3*buehlerPeriod)))     % 

NUM_POS;} 

548   else if (buehlerPhase < T2) 

549   { P1 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T1))/(3*buehlerPeri    od)) + ((float)(1)*NUM_POS)/12)) % 

NUM_POS; 



Team 11 - 30 
 
 

 

550     P2 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T1))/(3*buehlerPeri    od)) + ((float)(5)*NUM_POS)/12)) % 

NUM_POS;} 

551   else 

552   { P1 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T2))/(3*buehlerPeri    od)) + ((float)(11)*NUM_POS)/12)) % 

NUM_POS; 

553     P2 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T2))/(3*buehlerPeri    od)) + ((float)(07)*NUM_POS)/12)) % 

NUM_POS;} 

554 

555 

556   // printf("buehlerPeriod: %d, buehlerPhase: %llu, T1: %d, 

T2: %d, iPo    s[0]: %d, iPos[1]: %d\n",buehlerPeriod, 

buehlerPhase, T1, T2, pos[0], p    os[1]); 

557 

558 

559   if (dir == 'L') 

560   { 

561     pos[0] = pos[2] = (P1 + OFFSET1) % NUM_POS; 

562     pos[4] = ((P1 + OFFSET1) + (500*angles)) % NUM_POS; 

563     pos[3] = pos[5] = (P2 + OFFSET2) % NUM_POS; 

564     pos[1] = ((P2 + OFFSET2) - (500*angles)) % NUM_POS; 

565   } 

566   else if (dir == 'R') 

567   { 

568     pos[0] = pos[2] = (P1 + OFFSET1) % NUM_POS; 

569     pos[4] = ((P1 + OFFSET1) - (500*angles)) % NUM_POS; 

570     pos[3] = pos[5] = (P2 + OFFSET2) % NUM_POS; 

571     pos[1] = ((P2 + OFFSET2) + (500*angles)) % NUM_POS; 

572   } 

573   else 

574   {}; 

575 //  printf("exitingBuehler"); 

576   return (currTime); 

577 } 

578 

579 

580 

581 void stair(int rpm, int numSteps/* int phase_off, int 

stepPhaseTime, ch    ar turn_dir*/) 

582 { 

583   struct timeval tv = {.tv_sec = 0, .tv_usec = 0}; 
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584   int ipos[6] = {0}, mpos[6] = {0}, duty[6] = {0}, 

done[6]={0}; 

585   int stepNum = 0, lpos = 0; 

586   int off_R, off_M, off_F; 

587 

588   off_R = ((int) ((float)(1)*NUM_POS)/6)%NUM_POS; 

589   off_M = ((int) ((float)(1)*NUM_POS)/5)%NUM_POS; 

590   off_F = ((int) ((float)(3)*NUM_POS)/4)%NUM_POS; 

591 

592   printf("%d\n, %d\n, %d\n", off_R, off_M, ((OFFSET1 + 

off_F)%NUM_POS))    ; 

593 

594   moove(10,'F','B',(off_R+OFFSET1)%NUM_POS); 

595   moove(10,'F','M',(off_M+OFFSET1)%NUM_POS); 

596   moove(10,'F','F',(off_F+OFFSET1)%NUM_POS); 

597 

598   while(stepNum < numSteps) 

599   { 

600     tv = stair_buehler(rpm,ipos); 

601     readAllMotorPos(mpos); 

602     PD(&tv,ipos,mpos,duty); 

603     driveAllMotors('H',duty); 

604    //printf("Desired = %d, Acutual = %d\n",ipos[4], 

mpos[4]); 

605     { 

606       if(((((((off_F+OFFSET1)%NUM_POS)-1000) < (*ipos)) && 

(lpos <= (((    off_F+OFFSET1)%NUM_POS)-1000)))))// || ((OFFSET2 

> (*ipos)) && (lpos >=     OFFSET2))) 

607       { 

608         stepNum++; 

609         printf("Forward Motor: %d\n",(*ipos)); 

610         printf("Forward Motor(L): %d\n",(lpos)); 

611         printf("%d\n", stepNum); 

612       } 

613       lpos = *ipos; 

614     } 

615   } 

616 

617   //printf("Desired = %d, Acutual = %d\n",ipos[0], mpos[0]); 

618   //Ensure motors are stopped 

619   stopMotors(); 

620   return; 

621 } 

622 
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623 struct timeval stair_buehler(int rpm, int* pos) 

624 { 

625 //  printf("EnteringBuehler"); 

626   static struct timeval startTime = {.tv_sec = -1, .tv_usec 

= -1}; 

627   struct timeval currTime; 

628   static int buehlerPeriod; 

629   static int T1, T2; 

630   int P1, P2, P3; 

631 

632   if(startTime.tv_sec == -1) 

633   { 

634     gettimeofday(&startTime,NULL); 

635     buehlerPeriod = (int) (((float)(60)/rpm)*1000000); 

636     T1 = (int) ((float)(buehlerPeriod)/4); 

637     T2 =  buehlerPeriod - T1; 

638   } 

639 

640   gettimeofday(&currTime, NULL); 

641 

642   unsigned long long buehlerPhase = (unsigned long long) 

((currTime.tv_    sec - startTime.tv_sec)*1000000 + 

643                                     (currTime.tv_usec - 

startTime.tv_us    ec)) % buehlerPeriod; 

644 

645   //printf("buehlerPeriod : %d, beuhlerPhase %d startTime %d 

currTime %    d\n", buehlerPeriod, buehlerPhase, startTime, 

currTime/*Int*/); 

646 

647   if (buehlerPhase <= T1) 

648   { P1 = ((int) 

((((float)(7)*NUM_POS*(buehlerPhase))/(3*buehlerPeriod)    ) + 

((float) (1)*NUM_POS)/6)) % NUM_POS; 

649     P2 = ((int) ((float)(1)*NUM_POS)/6)%NUM_POS; 

650     P3 = ((int) ((float)(3)*NUM_POS)/4)%NUM_POS; 

651     //P3 = ((int) 

((((float)(11)*(NUM_POS*buehlerPhase)/3*buehlerPeriod    )) + 

((float) (1)*NUM_POS)/24))%NUM_POS; 

652   } 

653   else if (buehlerPhase < T2) 

654   { P1 = ((int) ((((float) (1)*(NUM_POS*(buehlerPhase-

T1))/(2*buehlerPe    riod)) + ((float)(3)*NUM_POS)/4))) % 

NUM_POS; 
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655     P2 = ((int) ((((float) (7)*(NUM_POS*(buehlerPhase-

T1))/(6*buehlerPe    riod)) + ((float)(1)*NUM_POS)/6))) % 

NUM_POS; 

656     P3 = ((int) ((((float) (5)*(NUM_POS*(buehlerPhase-

T1))/(6*buehlerPe    riod)) + ((float)(3)*NUM_POS)/4)))%NUM_POS; 

657   } 

658   else 

659   { 

660     P1 = ((int) (((float)  (2)*(NUM_POS*(buehlerPhase-

T2))/(3*buehlerPe    riod))))%NUM_POS; 

661     P2 = ((int) ((((float) (5)*(NUM_POS*(buehlerPhase-

T2))/(3*buehlerPe    riod)) + ((float)(3)*NUM_POS)/4)))%NUM_POS; 

662     P3 = ((int) ((((float) (7)*(NUM_POS*(buehlerPhase-

T2))/(3*buehlerPe    riod)) + ((float) 

(1)*NUM_POS)/6)))%NUM_POS; 

663   } 

664 

665   // printf("buehlerPeriod: %d, buehlerPhase: %llu, T1: %d, 

T2: %d, iPo    s[0]: %d, iPos[1]: %d\n",buehlerPeriod, 

buehlerPhase, T1, T2, pos[0], p    os[1]); 

666 

667   { 

668     pos[0] = pos[3] = (P3 + OFFSET1) % NUM_POS; 

669     pos[1] = pos[4] = (P2 + OFFSET1) % NUM_POS; 

670     pos[2] = pos[5] = (P1 + OFFSET1) % NUM_POS; 

671   } 

672 //  printf("exitingBuehler"); 

673   return (currTime); 

674 } 

675 

676 

677 

678 

679 #endif 

 


