

Team 11 – NASA/RASC-AL Robo-Ops

FAMU/FSU College of Engineering

Final Report

Faculty Advisors:
Jonathan Clark – Mechanical Engineering
Uwe H. Meyer-Baese – Electrical Engineering

Team Members:
Boris Barreto – Electrical and Computer Engineering
Jason Brown – Mechanical Engineering
Justin Hundeshell – Mechanical Engineering
Linus Nandati – Electrical Engineering
Tsung Lun Yang – Mechanical Engineering

Date: 04/17/2014

Contents
Table of Figures .. i

1.0 Abstract ... 1

2.0 Team Members and Facilities ... 1

3.0 Lessons Learned .. 2

4.0 SEM System ... 4

4.1 –Robotic Arm .. 4

4.1.1 – Robotic Arm Construction ... 4

4.1.2 – SEM Programming ... 5

4.1.3 – Potentiometer Arm Model .. 7

4.2 – Gripper Design ... 7

4.2.1 – Overview ... 7

4.2.2 – Core performance ... 7

4.2.3 – Preliminary design ... 8

4.2.4 – Final design.. 8

4.3 – Gripper Concepts ... 8

4.3.1 – Pitcher ... 8

4.3.2 – Scooper ... 9

4.3.3 – Universal jamming gripper .. 9

5.0 System Components ... 9

5.1 – Communication .. 9

6.0 Locomotion and Control ... 10

6.1 – Overview .. 10

6.2 – Project Scope ... 11

6.2 – New Locomotion Gaits ... 11

6.2.1 – Existing Locomotion Gaits ... 11

6.2.2 Buehler Clock ... 12

6.2.3 Turn While Walking .. 13

6.2.4 Stair Climbing ... 14

6.3 User Interface Improvements ... 16

6.3.1 Existing User Interface ... 16

6.3.2 – XPadder ... 17

6.3.3 – SDL & Curses Library ... 17

6.3.4 – XBOX Controller Mapping ... 18

6.4 – Function Improvements ... 18

6.4.1 – Motivation ... 18

6.4.2 – Continuous Movement ... 19

6.4.3 – Dynamic Gait Switching .. 19

Appendix A – Competition Overview .. 1

Appendix B – Design Concepts.. 1

B1.0 -- Proposed Designs .. 1

B1.1 – Arm Concepts ... 1

B.2 Gripper Concepts .. 3

B.3 Communications Concepts ... 6

B.4 Controls Concept Development .. 10

Appendix C – Decision Matrices.. 1

C.0 Decision Matrices .. 1

C.1 Arm Selection .. 1

C.2 Gripper Selection .. 2

Appendix D – Detailed Design and Design for Manufacturing ... 1

D1.0 – SEM Prototyping .. 1

D1.1 – FEM Analysis .. 2

D1.2 – Motor Analysis ... 3

D2.0 – Gripper Prototyping ... 3

Appendix E – Programming and Control Implementation.. 1

E1.0 –Xpadder ... 1

E2.0 – SDL Library .. 1

Appendix F – Source Code .. 1

F1.0 – Static Switch Main.c ... 1

F2.0 – Dynamic Switching Main.c (GET_CH_Test.c).. 6

F3.0 – Buehler.h .. 15

Team 11 - i

Table of Figures

Figure 1 -- Sample Extraction Module Arm ... 4

Figure 2 -- Motors Selected for Arm ... 5

Figure 3 -- RoboClaw Motor Controller .. 6

Figure 4 -- Example Command for RoboClaw ... 6

Figure 5 -- C Shaped Leg Design .. 10

Figure 6 -- Aerial View of the Robot to Display the Leg's Labels and Their Respective Groups 12

Figure 7 -- Buehler Clock Graph for both Set of Legs (Red = A, Blue = B) ... 12

Figure 8 -- Turn While Walking ... 13

Figure 9 -- Starting Position for Stair Climb Gait ... 14

Figure 10 -- First Phase of Stair Climb Gait ... 14

Figure 11 -- Second Phase ... 15

Figure 12 -- Final Phase Returning to Start Position ... 15

Figure 13 -- GUI ... 16

Figure 14 -- Madcatz XBOX360 Controller .. 16

Figure 15 -- XPadder Window ... 17

Figure 16 -- Xpadder Window Used .. 18

Figure 17 -- 2 DOF Arm Design .. 1

Figure 18 -- 3 Degree of Freedom with 1 Planar Joint .. 2

Figure 19 -- 3 Degree of Freedom Arm with all Revolute Joints ... 3

Figure 20 -- Scooper Design in Action ... 3

Figure 21 -- CAD Model of a Pincer Design ... 4

Figure 22 -- Universal Gripper Design ... 4

Figure 23 -- FESTO Fin Adaptive Fingers ... 5

Figure 24 -- Cad of Mesh Gripper Design .. 6

Figure 25 -- Previous Year's GUI .. 7

Figure 26 -- Communication Block Diagram ... 7

Figure 27 -- Communication Between User and Raspberry Pi .. 8

Figure 28 -- Left: Type G Router Right: Type N Router .. 8

Figure 29 -- Verizon 4G USB Stick (left) AT&T 4G USB Stick(right).. 9

Figure 30 – Proposed six legged device. The legs are labeled (and will be referenced as) 0 through 5. ... 10

Figure 31 -- Aerial view of the robot to display the leg's labels and their respective groups 10

Figure 32 -- Buehler Clock graph for both sets of legs (Red = A, Black = B) .. 11

Figure 33 -- SpaceHex laying down ... 13

Figure 34 -- Common Gaming Controllers .. 13

Figure 35 -- Initial Design CAD and Prototype .. 1

Figure 36 -- Second Generation Design ... 2

Figure 37 -- First Generation Gripper Prototype... 3

Figure 38 -- Second Generation Gripper Prototype .. 4

file:///C:/Users/Jason/Desktop/Final%20Report%20Combined.docx%23_Toc385485484
file:///C:/Users/Jason/Desktop/Final%20Report%20Combined.docx%23_Toc385485485

Team 11 - ii

Figure 39 -- Third Generation Prototype .. 4

Figure 40 -- Example of Xpadder Interface ... 1

Team 11 - 1

1.0 Abstract
This document describes the FAMU/FSU College of Engineering’s rover design for the 2013/2014 NASA

RASC-AL Robo-Ops competition. The team consists of five undergraduate engineering students each

with interests in space exploration and robotics. The team has experience in fields pertinent to remote

robotic systems such as wireless communications, object-oriented programming, materials science, and

mechatronics. Professional guidance and working facilities have been provided to the team by their

main advisor, Dr. Jonathan Clark, and the STRIDe Lab, which operates under his direction. Additional

guidance has been provided by the Electrical Coordinator, Dr. Michael Frank, and the Mechanical

Coordinator, Dr. Kamal Amin.

The goal of this year’s team was two-fold. For one, the team was to build upon the successes of last

year’s competition team while developing cutting-edge designs to overcome the shortcomings of the

previous year’s rover. Furthermore, the team had the goal of entering the 2014 NASA RASC-AL Robo-

Ops competition. The team made many improvements upon the design, namely improving the controls,

enhancing the locomotion, implementing a new gripper, and utilizing the Verizon 4G network for

communication with the rover. However, the team was unable to meet all their goals as NASA denied

their proposal to enter the competition based on the locomotion of the platform. This was quite a blow

to the team, especially since this event drastically affected the economics of the project and the

locomotion was seen by NASA as a strong point in last year’s competition. The change in opinion by

NASA was quite a setback, however, the team recovered and modified the goal with a view to next

year’s competition.

With respect to the rover itself, the proposed design features hexapedal locomotion which provides the

rover with key features to be rover successful. For one, the legs can operate over terrain that wheels

cannot. On top of the platform is a four degree of freedom robotic arm designed with a complementary

unique compliant gripper. Finally, this year’s design features a new control interface will allow for real

time control and dynamically improved communication throughput paired with iterations of

redundancies.

2.0 Team Members and Facilities
Jason Brown, Project Lead, Lead Arm Programmer – Jason Brown is a senior at The Florida State

University pursuing his BS in Mechanical Engineering. He spent this past summer working in the Center

for Intelligent Systems, Controls and Robotics on the development of an autonomous quadrotor. The

work focused on the integration of an autonomous quadrotor with an autonomous ATV.

Linus Nandati, Communication Specialist – Linus Nandati is a Senior at The Florida State University and

is pursuing a BS in Electrical Engineering. Currently, he is employed by Tech One IT Consulting as a

Networking Intern and will be promoted to a full-time professional upon graduation. His area of

expertise is communication systems and network security.

Team 11 - 2

Boris Barreto, Chief Programmer – Boris is not only bi-lingual in English and Spanish, but is also a dual-

major in Electrical and Computer engineering. His specializations include hardware and software

engineering and has experience in communications, electronics, and power. He is eager to implement

these skills in engineering our Robot.

Tsung-Lun ‘Chris’ Yang, Compliant Gripper Designer – Chris is a citizen of both U.S and Taiwan, he

fluently speaks both English and Mandarin Chinese. Chris joined the STRIDe Lab in 2013 as a research

assistant to focus on specialized attachment mechanisms for dynamic climbing on natural surfaces. This

experience should transfer towards our claw mechanism.

Justin Houdeshell, Robotic Arm Designer – Justin has held many leadership positions and understands

dedication. Multiple years’ experience as the Robotics Captain in HS, has led his team to nationals on

several occasions. Justin is very familiar with the implementation of cameras and sensors to develop

autonomous robots. Justin lives an active well-rounded lifestyle with academia as first priority.

STRIDe Lab, Working Facilities – Scansorial and Terrestrial Robotics and Integrated Design Lab was

founded in 2007 by its director, team advisor Dr. Jonathan Clark, with the aim of developing robotic

platforms which can challenge the agility and versatility of animalsand insects. STRIDe Lab has worked

extensively on the design and control of legged platforms and is well equipped for the task of developing

a legged rover. The lab boasts several tools to aid in the manufacture of a rover including a laser cutter,

composite material construction tools, extensive analysis and testing devices, and a capable machine

shop located adjacent to the FAMU/FSU College of Engineering.

3.0 Lessons Learned
Last year the FAMU-FSU team competed with a legged rover with a low degree of freedom robotic arm,

utilized a 3G/4G Verizon Wireless Dongle inserted into a type G router which communicated commands

sent from the home base GUI system via TP-Link MR3420 router LAN connections to 2 Raspberry Pi’s.

The Raspberry Pi’s connected sent commands to a Xula2-LX25 FPGA via SPI communication, which sent

commands to each of the six individually actuated legs.

The rover consisted of 6 independently actuated C shaped passively compliant legs utilizing Buehler’s

Algorithm to command the position of each leg. The legged motion provided a unique and capable

means of handling the various obstacles at the NASA rock yard. Experience from both last year’s team in

the competition and experiences in the Lunabotics Competition in 2012 has shown a hexapedal legged

the platform is capable of handling sandy terrain (including fine Regolith sand), steep inclines, and

obstacles larger than the ground clearance. This further supported the ability of legged locomotion and

thus we plan to implement the hexapedal locomotion as will be discussed later.

While the locomotion platform performed well against any terrain in a straight line, the control

algorithms struggled with navigating around obstacles and handling minor adjustments. The legged

locomotion had a fixed minimum distance for forward motion with standard stepping motion.

Additionally, turning motions are more challenging to accomplish compared to wheeled platforms. The

Team 11 - 3

rover last year had 3 different gaits: moving forward/reverse, turning in place, and a hill climbing gait.

The team experienced challenges in moving to a rock once it was identified. Some of the limitations of

the control are inherent to the locomotion system, which include the standard step size which

influences the minimum in place turn which can be achieved. This made clear the need for more control

schemes to effectively maneuver the course. Some of the limitations were overcome with new gaits and

control schemes such as turn-while walking, which will be discussed below.

The Sample Extraction Module from last year was designed to take advantage of the unique locomotion

platform, having only 2 linear degrees of freedom in the x and y directions, with the rover itself

providing the third degree of freedom. The mechanism was relatively slow from the point of identifying

a sample to acquiring the sample. The system’s stored configuration was far away from the extraction

area. Next, the system required the operator to make many minor adjustments once the system was

deployed. Limited visibility and perspective from the main camera then amplified the difficulty in making

the small adjustment. The limited workspace hindered the modules collection speed which was then

amplified by the limited movement of the rover. This year, the team completely revamped the arm,

creating a three degree arm and gripper. With increased mobility and intuitive controls, the modified

arm is a huge improvement and it will be discussed below as well.

The user control from last year was a GUI system which used command inputs to control the rover. The

command inputs were constructed through the GUI in the form of arrows which designated direction

and a window where the user entered the desired number of steps. The system would then execute the

command and a new command could not be entered until the previous command had been completed.

This method of user input slowed the team in handling the rover, for it required several seconds to enter

each command. Since hundreds of commands were entered during competition, the seconds added up

and the added lag in communications hindered user command speed. This made clear a new interface

need to be developed which was more intuitive and allowed for the rover to respond in real time. There

were several ideal features from the GUI such as a large display for the video feeds and relatively

intuitive controls. This year, the GUI will implement more advanced commands coming from an Xbox

controller.

Last year’s communications system utilized Verizon Wirelesses 3G network to send commands to the

rover and send the video feed to the mission control. The Verizon network was slower than expected on

the day of competition, which resulted in the connection being dropped multiple time during

competition. This made clear a more advanced communication system would be necessary to maintain

connection and transmit the necessary video feed. This year, the team upgraded to the Verizon 4G

network and used the services of no-ip.com to secure IP addresses. The improved communications

design will be discussed below.

The table below summarizes the lessons learned from last year’s team and the improvements made

over the past year:

Team 11 - 4

Table 1 -- Lessons Learned

 Performance During Competition Lessons Learned

Locomotion Straight Line handled all obstacles
Navigation was challenging

Showed legged motion’s ability to handle obstacles
Showed need for additional gate types

User Interface Required multiple commands to
execute step based control

System slowed teams ability to control the rover and
real time interface would be desirable for competition

Communication Connection dropped multiple
times and lagged continuously
during competition

Communication dependent on single network is
vulnerable to network fluctuations.

Sample
Extraction
Module

Able to pick up single rock, but
struggled for several minutes and
failed to acquire an relatively
easy sample

Slow mechanism
Poor vision
Limited reach/workspace
Poor terrain adaptation

4.0 SEM System

4.1 –Robotic Arm

4.1.1 – Robotic Arm Construction

 A goal for this year was to develop a new robotic arm with a higher degree of freedom and

lighter weight. We wanted to reduce the weight of the arm as it weighed around 10 kg, the new arm

weighs no more than 3 kg, approximately 1/3rd of the weight. The old arm was capable of 2 degrees of

freedom, this has also been improved, doubled to 4 degrees of freedom. If we examine the design of the

current model arm, we started with a target reach and strength. Over engineering to minimize error, we

ran calculations with a large budget expecting to receive such funding. The design was to use square

aluminum beams, stainless steel plates, and large high efficiency motors.

Figure 1 -- Sample Extraction Module Arm

 With this basic design, materials, and motors selected, simulations were ran to determine the

torque loads on each motor as well as the stresses along the ligaments of the arm. This ensured that all

Team 11 - 5

our components would work and gave us the ability to extrude material from the beams to reduce

weights and torques. Creo Parametric simulations provided all necessary data elements. When the

budget had been reduced significantly, the same general design was created with the available parts.

Figure 2 -- Motors Selected for Arm

 The STRIDe Lab provided us with an array of tools as well as a few materials. To overcome the

unexpected change in budget, we shorted the desired length of the arm by about 30%, which would still

allow plenty range of motion. Instead of square aluminum beams, parallel ABS sheets used. Now with

different distances and materials, calculations and more simulations told us the cheapest motors we

could now use were 1/8th the cost of the original design and much lighter. We kept the arm slightly over

engineered to allow for heavier object collection and for future project work.

 In this current and final design, sufficient reach was achieved and the weight had been reduced

significantly. It is comprised of 2 large Pololu DC motors, one directly at the base with a high torque

shaft coupling agent. The second drives a chain belt to the elbow joint and is attached as near to the

base as possible to reduce strain on the first motor. A Pololu “micro-motor” is in retrospect weightless

and paired with a small gearbox powerful too, this is found at the wrist which attaches to the innovative

robotic extraction module.

 The arm was designed to be constructed using the tool available in the STRIDe Lab which include

a drill press, hack saw, and laser cutter. The laser cutter allow for 2D cuts of most plastics up to a 1/4”.

The laser cut parts were then drilled to allow screws to support 3D structures. Several parts were

ordered to increase the precision of the manufacturing. The shafts, bearings, shaft couplers, and shaft

clamps were all purchased from Misumi, while the motors and encoders were purchased from Pololu.

 All in all, the robotic arm was physically a success as it meets each of our specifications. The

unfortunate part is the programming as the DC motor and motor controller are different makes, they

didn’t work as easily as plug-and-play.

4.1.2 – SEM Programming

 With the chosen design of a 3 degree of freedom (DOF) arm with a 1 DOF wrist and a

potentiometer model, the programming had to provide precise position control and had to be able to

read the positions from the potentiometers. In order to provide the precise position control, the

Team 11 - 6

RoboClaw 2x30A motor controller with built in PID control command was chosen to read the encoders

and internally make decisions on the direction and speed the motors would move. PID control uses the

error in the position and desired velocity to scale the motor power. For our purposes, the motors

desired position would be set by the potentiometer model and the desired speed would be set to zero

since the arm needed to hold its desired position.

Figure 3 -- RoboClaw Motor Controller

 The RoboClaw motor controller would be connected to one of the Raspberry Pi control modules

and communicate using UART communication protocols. UART is a 2 wire communication protocol that

uses a transmission and receive terminal, such that the transmit terminal from one device goes to the

receive terminal on the second device and vice versa. The RoboClaw then would read the information

sent across the UART lines and compare the input to a bank of set commands. Each command has a set

order of inputs it is expecting with an example provided in Fig. X . The address of the RoboClaw is used

to distinguish between several RoboClaws which like the team used. As part of the communication

protocol, a value called checksum is used to ensure all the values sent are correct. Checksum is the sum

of all the previous values masked to 7 bits.

Figure 4 -- Example Command for RoboClaw

Team 11 - 7

 The RoboClaw built in PID command however would not function. When the command was sent

to the RoboClaw, no output would occur. This generally means the command was sent incorrectly, but

the values sent were following the user manual. The team is still in communication with the

manufacturer to ensure the command is being sent correctly and to determine any other possible bugs

with the programming. Since the built in PID commands did not function as expected, the secondary

option was to create the PID control on the Raspberry Pi. This is inherently an inferior solution since all

decisions are made at the speed of the communication protocols can support rather than the speed of a

microprocessor which operates at speed 100 to 1000 faster than the communication protocols can

support. Additionally, it places a much larger processor load on the Raspberry Pi. While the solution was

not ideal, the PID control through the Raspberry Pi does work with moderate success. Its operates at

around 25-50 Hz, which is about the speed the motor can react, which is not ideal. Since the solution is

not ideal, the team is still attempting to work with the manufacturer to debug the onboard PID code.

4.1.3 – Potentiometer Arm Model

 As part of our goal to make a more intuitive and user friendly interface, the user input for the

robotic arm is a potentiometer model the user can physically move. The potentiometer model, shown in

Fig. X , has a high resolution potentiometer at each joint which changes resistance as the model is

moved. The potentiometers are independently connected to a DragonBoard microprocessor which has

multiple analog to digital converters (ADC) pins. This is necessary to convert the potentiometer to a

digital signal which can be sent from the command station to the rover and be understood by the PID

control. The ADC on the DragonBoard is 10 bits, meaning that the potentiometer which will be supplied

5V from the microprocessor, can have a digital value ranging from 0-1024 corresponding to 0-5V

through the potentiometer. This digital value is then mapped to the encoder position of the motor, and

the desired encoder position is sent to the PID control. The DragonBoard also has serial communication

commands and can send the potentiometer values through a USB terminal to the command computer

which reads the values in the GUI and transmits the values.

4.2 – Gripper Design

4.2.1 – Overview

The sample extraction system needs a mechanical component to grasp rock samples at the end effector

of the robotic manipulator. According to the competition guidelines, rock samples will vary in sizes and

masses ranging from 2 - 8 cm in diameter and 20 - 150 g mass. The mechanism must be capable of

acquiring largest rock sample discretely as points will be awarded for the selection of specific rocks. The

component must be versatile in rock acquisition, and strong enough to endure competition

environment.

4.2.2 – Core performance

The core system of this gripper is based on two actuated four bar mechanism. This mechanism will

effectively consist of grounded crank and rocker links connected by a coupler link. The coupler’s motion

is used for actual grasping, and this motion made up the pincher component of the design which

provides the precise capturing motion.

Team 11 - 8

The end of the gripper is a wide area arc attachment lined with elastic webbings designed to conform to

the orientation and shape of the sample to provide increased tractions between the gripper and the

sample without the need of increased torque.

4.2.3 – Preliminary design

A model of the gripper design is pictured in the figure below. The four bar mechanisms are planned to

comprise of cardboard links for the process of rapid prototyping. The coupler-arc are connected to a

base enclosure via mirrored mechanisms on each side of the enclosure. The Driving Four bar

mechanisms are driven by one servos, power transmitted via the spur gears connected to the crank.

In search for the elastic material for the gripper design, several important parameters were established

to evaluate the material. First, the material must have great elasticity but also durable. This is to ensure

the reliability and repeatability of sample extraction process. Second, the material must exhibit strong

cold temperature tolerance. This is due to the extreme cold climate of the surface of Mars. First aid

tapes were first equipped on the initial prototype as shown in figure.

4.2.4 – Final design

The final gripper design material is chosen to be ABS plastic instead of aluminum since the specific

strength of the plastic was tested to be satisfactory. The design is powered by a Pololu 6V gear

micromotor coupled to a spur gear train to transmit the output torque throughout. Two 1:1 spur gear

arrangement couples the two drive cranks together to achieve the desired counter-rotating motion. The

pincher two four bar mechanisms were improved to ensure the force angle of the crank to coupler

remains sufficient when the gripper is fully closed.

The compliant material for the end effector attachments have been carefully considered due to the

potentially extreme cold climate of outer planets like Mars. The proposed material,

polydimethylsiloxane (silicone rubber), is known for its elasticity and ability to withstand large

temperature variation ranging from -120C to 300C while maintaining the essential elastic properties. It

is also important to note that the manufacturing process in which the silicone rubber polymer is

synthesized and shaped determines the various temperature ranges the material can endure. Based on

the low cost and abundant availability, the team will be using low grade silicone rubber sheets; however,

selection of higher grade material would make the design suitable for extreme climates.

4.3 – Gripper Concepts

4.3.1 – Pitcher

The common pincer style claws attempt to mimic the way relatively small objects are most typically

secured by the human hand. These claws generally consist of prongs or fingers which move towards

each other to capture an object and prevent further motion through continuous application of force.

This style of claw is good at picking up discreet objects but requires a relatively high level of precision

from the manipulator arm module due to the small end surface area of the pincher tip.

Team 11 - 9

4.3.2 – Scooper

The scooper design employs the term ‘scoop’ quite literately in its name. Most scooper design are based

on the idea of using the geometry (generally a concave surface) and the direction of gravity to capture

and retain an object or substance. Scooper are generally used to pick up large quantities of a material

and are not ideal for acquisition of discreet objects for the reason that it often picks up unwanted

materials along. Although Scooper can be operated successfully with much less precision than pincer

style claws, it lacks the precision the pincher possesses.

4.3.3 – Universal jamming gripper

This gripper concept utilizes not so common technique of picking up objects. Instead of having rigid

moving members which grasp or scoop and object, this universal gripper conforms to the object in

which it is grasping. The gripper consists of an ordinary latex party balloon filled with ground coffee.

When the coffee-filled balloon is pressed onto the desired object to be picked up, the balloon and coffee

conform to the object. At this point, a vacuum pump evacuates air from the balloon, solidifying the

balloon, and thus gripping the object. This solidification is due to a “jamming transition” experienced by

the coffee. When the air is vacated from the coffee filled balloon, the particulates of the coffee are

pressed against each other causing them to resist slipping by one another or causing “jamming.”

This concept is very beneficial in that the gripper will not have to orient itself to the object being picked

up, but rather simply press against it. Conventional grippers require the target object to be oriented a

certain way between the contact points to be picked up. This concept has a major flaws when it comes

to implementation in the competition, as it requires strong suctions from an air compressor and

additional powers from the battery making it almost impossible to implement on a rover platform with

limited battery power and weight restriction.

5.0 System Components

5.1 – Communication
The figure below is a schematic illustrating the overall communications system. Mission Control,

consisting of a computer with internet connection, communicates with the rover over the Verizon 4G

Network. Mission Control makes up the first Local Area Network (LAN). The rover has a router that

communicates with the Raspberry Pi mini computers that activate the robots legs and arm, and two IP

(Internet Protocol) cameras that send a video feed, making the rover a second LAN. The router also has

a Verizon 4G modem attached to its USB port. The Mission Control communicates with the on-board

rover over the Verizon 4G Network using a service called no-ip.com. The no-ip.com service offers a url

that access a pool of IP addresses. This allows the router to have dynamic IP addressing, without having

the user to lose connection due to IP address changes, or having to constantly “sniff” or re-connect.

ROVER COMUNICATION DESIGN OVERVIEW

On board the rover, a router with a Verizon 4G LTE USB Card installed will link the rover’s components

to mission control. This router will be linked with the mission control rover over a commercial WAN. Last

year’s design relied solely on the Verizon 3G Network, however this lead to interruptions in

Team 11 - 10

communication as the network faced problems on the day of the competition. This year, the team

upgraded to the 4G network, which is up to 8 times faster than the 3G network. This will create less lag

in the design and improve performance.

The vision system will include an IP camera that sits atop the camera mast which is able to pan and tilt.

A second IP camera is mounted to the Sample Extraction Module to ensure an optimal viewing angle for

the user controlling the arm. The cameras are ideal for the design as they have specific IP addresses,

making links to the router easier to implement. Hypertext Transfer Protocol (HTTP) will be used to feed

the videos to the on-rover router.

Secure Shell (SSH) protocol will be used to communicate with the Raspberry Pi mini-computers. The

Raspberry Pis are programmed with the C programming language and have a Linux-based Operating

System installed. The SSH server and client are readily available on many Linux distributions making SSH

protocol a viable solution. Last year’s team discovered most wireless broadband carriers prevent

incoming SSH connections, but do permit outgoing SSH connections. Thus, a script was written that,

upon booting the system, connects the Raspberry Pi to a Mission Control port, allowing the server to

reverse-SSH back into the Raspberry Pi allowing the user to communicate with the mini-computer.

To communicate between different devices on the rover (i.e. between the leg motors and the mini
computers) Serial Peripheral Interface (SPI) wires were integrated into the design. The SPI protocol
transmits information in full Duplex, meaning it can transfer a byte and read another byte being sent all
simultaneously. This property greatly improves the speed of the design.

6.0 Locomotion and Control

6.1 – Overview

Figure 5 -- C Shaped Leg Design

In order for the rover to be useful in collecting samples, it must contain a fluid locomotion

system as well as a user-friendly control interface. The legged design which is being used for this rover

requires precise control of each leg, which is established through extensive programming. While moving

forward is simple with a wheeled platform, it requires very precise algorithms, specifically the Buehler

Clock, in order to achieve the same effect in the legged design. This extra work will prove to be

worthwhile when the benefits of the legged platform are exposed on the rock field.

Team 11 - 11

6.2 – Project Scope
The goal for this year’s group is to improve on the locomotion system and controls system which

was established previously. The rover was able to traverse different terrains fine, but it was very slow

and limited in its range. The rover previously required a command from a complicated GUI for each

input. The command would instruct the robot on which direction to move, how fast to move, and how

many steps to take. After each command, the rover would return to standing position and wait for the

next input.

Although this was sufficient for a moving platform, it was by no means user friendly or fast. This

year, three main focuses were established and were implemented. First, user interface will be improved

to be more forgiving for the controller of the robot. Hopefully, a complete stranger will be able to take

the machine and control it with minimal instruction. This was established through an XBOX controller

and will be explained thoroughly below. Secondly, multiple gaits will be added to the rover to create

more options for locomotion. Examples are Turn While Walking and Stair Climbing. Finally, existing

commands will be improved in multiple ways. Two key points here are to ensure that the command can

be run continuously so that the rover will continue to move until instructed to stop and to enable

dynamic switching between gaits. These changes will allow for the rover to be easier to control and

faster in its operation.

6.2 – New Locomotion Gaits

6.2.1 – Existing Locomotion Gaits

The platform which was created last year was able to move in a very limited range of motion.

The functions which were available included calibrate, forward walk, backward walk, turn-in-place, lay

down, stand, and hill climb. Although these gaits combined to allow for movement to any general point,

it struggled with specific locations. The c-shape legs are too big to do precise movements with these

functions. For example, whenever one step is taken in the left or right direction, the rover moves

approximately 30°. If a desired turn angle of 15° is desired, the rover would not easily be able to

accomplish the task. Also, the need to stop moving forward while changing direction made for slow

travel times. These problems are the motivation for the new turn-while-walking function.

The locomotion functions each had individual functions and thus had different parameters that

must be entered into the function to run. The lay down and stand functions were void and thus had no

parameters. The Hill Gait function had a number of steps parameter and an RPM parameter. This two

told the rover how many leg rotations to make and how fast to make them up a hill. Finally, the

locomotion functions will all take in similar parameters. The parameter list contains RPM, direction

(Forward, Backward, Left, and Right), and number of steps.

Team 11 - 12

6.2.2 Buehler Clock

Figure 6 -- Aerial View of the Robot to Display the Leg's Labels and Their Respective Groups

When the robot walks in a straight line, the 0, 2, and 4 legs will be coupled together (call them

set A), sharing the same movements. The 1, 3, and 5 legs will also be coupled (set B), and they will move

at exactly 180° phase difference from set A. To be precise, this means that while one set is pointing

directly downward, in its peak contact with the ground, the other set will be directly upright, at its

highest point.

Figure 7 -- Buehler Clock Graph for both Set of Legs (Red = A, Blue = B)

To understand the locomotion further, one must understand the Buehler clock. The Buehler

clock describes the relationship between the speed of the leg and its location in its rotation. When any

given set of legs are on the ground, they must move slower than when they are in the air, so that the

other legs can “catch” the robot right as they are leaving the ground stage. Figure 13 shows this

relationship. The slope of the lines describes the speed of the legs rotation, the y axis describes the

location in the legs rotation, and the x axis describes time. Notice that the legs change speeds at T/4 and

(3T)/4. Notice that in this image, both sets of legs start and end at 0 and 2π respectively.

Team 11 - 13

6.2.3 Turn While Walking

Figure 8 -- Turn While Walking

Now that walk is understood, turn while walking must be implemented. One’s immediate

response to implementing turn while walking is to increase the speed of one side of the legs and thus

create a turn. This design was considered but quickly failed when it was hypothesized and proven that

the rover would simply fall over, since the legs would lose their coupling over time. The next idea was to

adjust the phase at which the left legs differ from the right legs. For example, put leg 1 20° ahead of legs

3 and 5, while simultaneously putting leg 4 20° behind legs 0 and 2. This will cause the left legs (the ones

that are ahead) to hit the ground slightly before the right legs leave the ground. For the second that the

legs are together on the floor, there will be a slight turning motion to the right, and then the robot will

continue to move forward once the left legs catch up (at which point the other set of legs will have lifted

into the air).

 In order to ensure that even the most subtle angles could be reached through the turn-while-

walking function, a separate input parameter was introduced, called “angles”. This variable controls the

phase between the legs, and ranges on a scale from 0 – 10, where 10 is the highest allowable phase

difference and 0 is the lowest. In practical terms, 10 makes the difference between the legs

approximately 5000 motor encoder values while 0 represents the normal forward walking function.

When this value is increased, the time that the set of legs are on the ground together will increase and

thus make for a wider turn.

Team 11 - 14

6.2.4 Stair Climbing

Figure 9 -- Starting Position for Stair Climb Gait

Although there are no stairs on Mars (yet), a stair climbing gait was implemented in order to

show the power of a legged platform over a wheeled platform. In order to implement the stair climb,

the legs had to be grouped into pairs. The groupings were the “Back” pair, the “Middle” pair, and the

“Front” pair. These three groupings were controlled in three phases, where each leg moved to a new

position at a new speed.

Figure 10 -- First Phase of Stair Climb Gait

In the first stage, the rover starts in a new position on the stairs. Note that the “Back” and

“Middle” pairs are in the same position, whereas the “Front” pair is in its own position. The “Back” legs

then begin movement to rest on top of the next step in the stair case. While these legs are in the air,

moving toward the next step, the other two sets hold the rover in place.

Team 11 - 15

Figure 11 -- Second Phase

In the second stage, the “Back” pair begins to push the rover up the stairs slowly. This holds the

rover in place for the “Middle” set to move to the next step. The “Front” legs are also still on the

ground. They will begin to move slowly, pushing the rover up with the “Back” set.

Figure 12 -- Final Phase Returning to Start Position

In the third and final stage, the “Back legs continue to slowly push the rover up the stairs. The

“Middle” legs have reached the next step and now begin to slowly push the rover up the stairs with the

“Back” legs. These two sets will hold the rover while the “Front” set quickly rotates and catches on to

the next step. At the end of this stage, the legs will be in the same position that they were in before the

step climb, ready for the next step. Notice that at all points, there are four legs holding the rover on the

stairwell to prevent slipping or falling, making the function extremely consistent.

Team 11 - 16

6.3 User Interface Improvements

6.3.1 Existing User Interface

Figure 13 -- GUI

The existing user interface took the form of a Graphical User Interface. The GUI came equipped

with the video feed, the temperature sensor readings for the motors, status indicators for the network

connection, arm controls functions, and the necessary locomotion controls. To send a command, the

number of steps and speed must be typed into their appropriate boxes. Then the button for the

direction must be pressed. The command will appear in the command text box. If the send button is

pressed, the command is relayed over the network and then the robot will begin motion.

Figure 14 -- Madcatz XBOX360 Controller

The GUI provided a lot of benefits, but the locomotion control was very slow and not user

friendly. The large camera feed and the status boxes which came with the GUI were preserved and will

be re-used in correspondence with a new control interface. The new interface will be an XBOX

Team 11 - 17

controller, which will allow for quick, consistent locomotion control, all on a very comfortable and user

friendly environment.

6.3.2 – XPadder

Figure 15 -- XPadder Window

 XPadder is a program which was necessary to eliminate the GUI and transfer the control to an

XBOX controller. It simulates the keyboard and mouse using a controller which allows for key mappings

from the keyboard to the controller. A first prototype was created and tested. In this prototype,

hardcoded commands were sent to the command line by pushing a button on the XBOX controller.

While this allowed for control through a more user friendly device, it was not a sufficient design. The

functions were limited by the number of commands which could be mapped to the controller,

approximately 22. This means that if one button was used for “Forward Walk, 5 steps, 20 RPM” then it

could not be altered in any way without accessing the software. In addition, the function inputs from the

XBOX controller were slow and did not provide much of an increase in performance. XPadder is still used

in the final design in order to operate the rover through the XBOX controller.

6.3.3 – SDL & Curses Library

 In order to allow for fluid movement which depended on individual key presses as opposed to

commands, the SDL library was explored and implemented. SDL is a library designed to provide low level

access to a keyboard. It is a software used in many computer games to control individual models in

movement and interaction with their environments. This library would allow for individual key presses

to be read into the program directly and interact with the code accordingly. The SDL library was

downloaded and installed onto the locomotion Raspberry Pi and tested with sample programs. After

multiple tests, the SDL environment proved to be counterintuitive and ineffective.

 Curses is a terminal control library for Unix-like systems. The library enables the construction of

text user interface, meaning that keyboard inputs could be read by a program and affect a function

directly. The library provides necessary functions, specifically cbreak(void), halfdelay(int), flushinp(void),

and getch(void).The cbreak(void) function allows for input without pressing the enter key, halfdelay(int)

tells the getch(void) function how long to wait before reading a default value for its return value,

Team 11 - 18

flushinp(void) clears the input buffer which allows for the latest command to be read, and getch(void)

waits for a user input and returns that input to a character value.

6.3.4 – XBOX Controller Mapping

Figure 16 -- Xpadder Window Used

 With the library instantiated, the Madcatz XBOX360 controller could now be mapped to

individual keyboard buttons. When the joystick is pushed forward, a string of ‘w’s appear on the

command line until the joystick is released. This concept applies to every button on the joystick and is

mapped by the following table.

Table 2 -- Controller to Function Mapping

Button Pressed On Controller Function

Left Joystick-Up Forward Walk

Left Joystick-Down Backwards Walk

Left Joystick-Left Turn In Place - Left

Left Joystick-Right Turn In Place - Right

Right Joystick-Left Turn While Walking - Left

Right Joystick-Right Turn While Walking - Right

‘A’ Sit/Stand

‘Y’ Calibrate Legs

Left Bumper Decrease ‘angles’ by 1

Right Bumper Increase ‘angles’ by 1

Left Trigger Decrease RPM by 5

Right Trigger Increase RPM by 5

6.4 – Function Improvements

6.4.1 – Motivation

 A large problem with the walk functions incorporated in the rover’s previous design is the need

to guess the correct distance to an object so that the correct number of steps could be input. There was

little room for error and thus, to be precise, each command took up to 30 second each to be input to the

Team 11 - 19

rover. This caused for extremely slow movement and a high amount of time wasted trying to get into

position to pick up objects. A locomotion system which does not require step inputs but simply moves

the rover continuously until told to stop would reduce this guessing and increase productivity.

6.4.2 – Continuous Movement

 The first issue which must be tackled in the programming is the slow nature of a robot which

takes a predetermined number of steps. The goal is to make a machine which continues to move

forward until the joystick is released, much like a wheeled machine would.

 The first programming prototype was simple. The number of steps was reduced to one in each

function and thrown in a continuous loop which ended when the appropriate button was released on

the joystick. The theory was correct, but the implementation was faltering. The walk function would not

exit upon release of the joystick. It was realized that there was an input buffer which was holding values

for the character which ended the while loop. This buffer continued to fill and provided values to the

while loop one by one. This resulted in unpredictable ‘walk’ distances and proved even more difficult to

predict than the step-counting method used prior.

In order to correct this, a new curses method was discovered. flushinp(void) is a library function

which clears this input upon command. This made it so the while loop only read in the most recent

character put in to check, which ensured that no fault commands were being input to the loop. This

method worked for very specific situations. As planned, the legs would continue to rotate until the

button is released. There were errors though. When the step ended and another command was input,

the legs would sometimes have incorrect timing variables and result in an error. It was discovered that

when the steps ended in an odd step, the legs ended at 180° off phase of the original start position for

the walk command. This phase difference threw off the necessary timing variables which controlled

where the legs should be and consistently resulted in an error. Even steps also had errors, though they

were inconsistent and sometimes did not occur.

6.4.3 – Dynamic Gait Switching

 The Buehler clock functions which executed the walk commands were further examined. There

were two timing variables which created the variable ‘BuehlerPhase’ which kept track of where all six

legs should be in their rotations. These two timing variables were re-instantiated in each function

execution, which solved the inconsistent errors in even steps. Although the even steps were working, in

order to allow for the rover to stop and continue a walking motion, the BuehlerPhase had to be changed

to account for odd steps and even steps accordingly. First the main code was changed. An oddsteps

variable was introduced and kept track of whether a given step was odd or even. This oddsteps variable

was then input as a new parameter into the locomotion gaits. Inside the Buehler function, an if

statement was introduced to check for oddsteps. If the function was executing an even step no further

changes were necessary. The even steps were correct as is. If the function was executing an odd step,

the BuehlerPhase was changed to (1.5 ∗ 𝐵𝑢𝑒ℎ𝑙𝑒𝑟𝑃ℎ𝑎𝑠𝑒). This resulted in the BuehlerPhase properly

representing to the legs that they should be at 180° off of their original starting position and thus

resulted in a smooth walking function for odd steps.

Team 11 - 20

 This code was inserted into all locomotion functions and worked across each function. In order

to implement dynamic switching between them, a new main file was written. This new file worked with

an infinite loop which contained a large switch statement. The switch statement contained case

statements for the following buttons and their corresponding commands.

Table 3 -- Case Conditions and Their Corresponding Commands

Case Statement Function

‘w’ Forward Walk

‘s’ Backwards Walk

‘a’ Turn In Place - Left

‘d’ Turn In Place - Right

‘q’ Turn While Walking - Left

‘e’ Turn While Walking - Right

‘l’ Sit

‘c’ Calibrate Legs

‘i’ Decrease ‘angles’ by 1

‘k’ Increase ‘angles’ by 1

‘u’ Decrease RPM by 5

‘j’ Increase RPM by 5

default Stand And Hold

 This switch statement allowed internally for dynamic switching. Whenever no buttons were

being pressed, the rover would return its legs back to the standing position and enter a while loop which

held the rover in place until a button was pressed. In this state, the rover would do nothing. Whenever a

button was pressed, the legs would move into the starting walk position and enter their appropriate

switch statement. The legs would then enter a loop which continued until the button was released. This

loop would contain the walk function with the corresponding direction, oddsteps value, angles value,

and RPM. When another button is pressed, the loop will exit and the switch statement will check the

value. If the value is one of the possible case conditions, it will enter that condition and enter that while

loop, flowing with little delay from one function to the other. This loop will continue until that button is

released. When all buttons are released, the rover goes into the standing position and holds until a new

command is entered.

Team 11 - 1

Appendix A – Competition Overview
A. Competition Rules and Requirements
Competition Summary

The NASA Rascal Robo-Ops competition’s goal is to create new and innovative solutions

toward the development of rover’s capable of traversing mars which is simulated at the NASA

Space Center. The rover must be controlled remotely over a commercially available wireless

network, be able to navigate obstacles, and be able to identify and acquire brightly colored rock

samples. Teams also must engage in public outreach to foster interest in space exploration and

robotic development, utilizing social media and community events.

Requirements for 2013

The process to become a participant is as follows. First, a notice of intent form is submitted to

the competition stewards. Next, an proposal documents is submitted (due December 8, 2013)

which must be no more than 8 pages. From the proposals submitted, 8 teams will be selected

(notified December 20, 2013), which nets the team a $5,000 grant to construct the proposed

rover.

Rover specs for competition trim

In the rover’s “Stowed configuration”, meaning with all peripherals retracted, the rover must not

exceed dimensions 1m x 1m x0.5m. The maximum mass (without payload) must not exceed

45kg, or else points will be deducted. No internal combustion engines are allowed, and the rover

must be water-proof.

Rover performance and capability required

The rover must be capable of traversing obstacles at least 10cm tall, negotiate +/- 33% grades,

and traverse level sand surfaces for at least 20 feet of distance. The areas of the JSC Rock Yard

to be included in the competition are the Rock Field, Lunar craters, Sand Dunes, and the Mars

Hill. The rover must selectively acquire at least five irregularly shaped rocks while traversing the

JSC Rock Yard. The rocks are outlined as having diameters from 2 - 8 cm, masses from 20 - 150

gm, and be of different colors each corresponding to a point value. The rover must store and

carry these rocks throughout the course. The JSC Rock Yard and the rocks of interest can be seen

in Figure 8, below.

Controls and Communications Requirement

As stated before, the rover must be remotely controlled from the team’s home campus over a

commercial cellular data network (ie. via wireless broadband card). Rover data must be sent

from the rover itself to operators and spectators online. This data is required to consist of live

video feed and some rover telemetry. The video feed must be capable of distinguishing color

(rock samples), and must be recorded and posted on the team's website.

Requirements for 2014

After being selected to compete in the 2014 RASC-AL Robo-Ops competition, the team will be

required to continuously document and broadcast rover development progress. These reports are

required to outline how the team has met the aforementioned “milestones” of the competition.

Next, each report will be introduced along with the milestones the team is expected to cover in

that report.

Team 11 - 2

Mid-Project Review Report + Video – due March 15, 2014

The purpose of this report is to display to the competition stewards that a team is on schedule to

completing a rover capable of satisfying all design and performance requirements. This report

consists of a five-page written portion and a YouTube video. The whole report must demonstrate

the rover’s present functionality and chronicle what is yet to come. Team must outline where

they are with the project and how confident they are that their rover will be completed. If the

stewards feel that a team’s report does not show this, they will be required to do a live follow-up

web chat with the stewards to redeem themselves. Only after the stewards are satisfied with a

team’s progress will be awarded an additional $5,000 grant money be awarded to a team.

Team 11 - 1

Appendix B – Design Concepts

B1.0 -- Proposed Designs

B1.1 – Arm Concepts

B1.1.1 – 2 DOF Arm

The first arm concept is to improve upon last year’s design, a planar two degree of freedom arm.

The design would need to be reduced and a more advanced wrist would be developed with the

arm. The rover can have very precise control over it Z position making this arm simple and easy.

Figure 17 -- 2 DOF Arm Design

The advantages of this design were described by last year’s team, but will be explored again for

comparison. The system requires the control of only 2 motors, and the control over the rover

itself. The thought was also that by having fewer motors and systems, the overall weight would

be reduced, and would impact the cost and reliability of the system. The final thought was that

the arm remaining close to the body would keep the platform more stable.

The desired advantages turned out to be some of the arms shortcomings. The control did turn out

to be significantly easier, and allowed the team to develop a click to grab routine where the user

could click on the GUI and the robot would move the arm into position to pick up the sample.

This routine was not tested in competition because an encoder failed the night before

competition.

Team 11 - 2

The from the hardware desire, the arm could not fit into the competition dimensions with the arm

remaining planar. A innovative rail follower was devised, but forced the arm into the air, which

then hurt the center of gravity and the deployment speed. Finally, to achieve the reach desired, a

large linear actuator was needed and then forced the rest of the system to be bigger and heavier

than originally thought.

B.1.2 – 3 DOF Arm with 1 Planar Joint

Three degree of freedom arm concepts were then explored. The first of these was this arm design

which has 2 revolute joints and a planar joint to extend the arm. This design would be similar to

WPI’s design with the addition of a linear actuator instead of a rigid arm.

Figure 18 -- 3 Degree of Freedom with 1 Planar Joint

The advantages to this design is it requires less control than an arm like Caltech’s or Maryland’s,

but still give the necessary degrees of freedom to reach most rocks without the rover needing to

move. The design could still stay close to the body and keep the center of gravity low.

The disadvantages for this design include the weight of the system which would likely by higher

to include an linear actuator. The revolute joint would need to be designed to withstand the

weight and the motors controlling the degrees of freedom would need to be stronger.

B.1.3 – 3 DOF Arm with All Revolute Joints

The final design explored is a three degree of freedom arm with all revolute joints. The design

would consist of a 2 degree of freedom “shoulder” joint, and a 1 degree of freedom “elbow. The

current concept is to include a 1 degree of freedom wrist, but this would depend on the gripper

concept chosen.

Team 11 - 3

Figure 19 -- 3 Degree of Freedom Arm with all Revolute Joints

The advantages of this concept is the flexibility in it use and in its flexibility in placement on the

rover. It could be placed on top of or in front of the rover without any difference in functionality.

Additionally, the storage compartment could be placed in any location which is convenient.

Finally, it can be very compact and utilize very lightweight materials and still be strong enough

and have the desired range.

The disadvantage is the advanced control necessary to utilize such a design. For it to be user

friendly to use, the arm would need to have some form of automation, or at least control mapped

from the x y z frame to the motor.

B.2 Gripper Concepts

B.2.1 – Scooper Design

The first design discussed was a scooper designed gripper. Scoop is defined by Merriam Webster

as “something that is shaped like a bowl or bucket and used to pick up and move things”.

Essentially, it uses a distinctive shape and gravity to collect large quantities of material. It does

not require as much precision as the pincer design which we will talk through next.

Figure 20 -- Scooper Design in Action

Team 11 - 4

B.2.2 – Pincer/ Finger Designs

Pincer/finger grippers use the same technique as the human had to grab and secure small objects.

The pincer normally has two fingers which can move in toward an object or release away from

the object, and uses a constant force on the object to keep it secured. It is very good at picking up

discrete objects, but needs to be placed precisely for the object to be secured.

Figure 21 -- CAD Model of a Pincer Design

B.2.3 – Universal Gripper

Some more recent gripper research has gone into attempting to develop a gripper which has the

ability to easily grab a discrete object. This has led to the development of universal grippers

which utilize a conformable material to grasp an object. The gripper shown below in Figure #

consists of a balloon filled with ground coffee. The balloon is pressed onto the object desired,

and then a vacuum pump evacuates air from the balloon, causing the coffee grounds to jam

against each other, forming a ‘rigid’ gripper.

Figure 22 -- Universal Gripper Design

Team 11 - 5

B.2.4 – Compliant Gripper Mechanism

The combinations of the previous designs lead to very interesting concepts. The first of these is

compliant fingers which combines the universal gripper with the pincer gripper. Compliant

finger grippers need to be precise in their implementation, but require less precision than rigid

fingers. They can reach and grab discrete objects in confined spaces, however the precision

required to use them is still very high. There are a few finger ideas on the board, 2 pronged,

which is small and can reach most everything but needs to squeeze the rock and get a good grip

as it’s only touching the rock in two places, or 3 pronged, which would hold the rock very stable

but may not be able to get access to 3 different sides of the rock. The FESTO Fin Adaptive

Finger (right) has gained our curiosity as its shape conforms to object it is grabbing and is

delicate enough to pick up an egg. The second idea for fingers are rake-like, skinny tendrils on

the fingers allow the fingers to close around the rocks shape to have greater contact area.

Figure 23 -- FESTO Fin Adaptive Fingers

By combining the universal gripper, with a scoop design, along with some elements of the

pincer, you can come up with a mesh gripper. The mesh gripper consists of two clamps that have

a mesh screen in their center, then became an elastic mesh grip which will be more versatile and

have a higher friction coefficient. With the bottom support was removed to create an upside-

down U structure so we can get the mesh as close to the ground as possible. This mesh gripper

clamps onto the rock and it conforms to the unique shape of the rock.

Team 11 - 6

Figure 24 -- Cad of Mesh Gripper Design

B.3 Communications Concepts

Last year’s design utilized Verizon 3G coverage to communicate with the platform. This was

advantageous considering the fact that a tower is very near to the competition site. A “mission

control” center was established in Tallahassee where the users controlled the rover. The design

was simple. Mission control consisted of a user working with the GUI to operate the robot. The

GUI would be on a laptop. Using a 3G USB Card, the laptop would communicate with a router

on board the rover. The router has a USB port, which is helpful in communications. Last year’s

operators plugged in a Verizon 3G card in the router as well. The on-rover router would

communicate with the Raspberry Pi computers, thus linking the user to the rover.

B.3.1 – Graphical User Interface

The Graphical User Interface (GUI) is a custom computer application which aims to greatly

simplify the operation of the rover through integration of information display, in the form of

video feeds and sensor data, and rover control. In essence, it gives the user a tool for controlling

the rover.

In last year’s design, the GUI was written in the C# program language. Below is an image of the

objective of the design:

Team 11 - 7

Figure 25 -- Previous Year's GUI

The GUI was operational, but many aspects will be changed in order to make the GUI more user

friendly. For one thing, the user would have to input the number of steps and the direction that

the rover should proceed. The process was very cumbersome, especially if the user needed the

rover to move to a specific spot. As the rover will be competing with other rovers to pick up the

most rocks, creating a GUI that allows the user to interact more freely with the rover would be

much more efficient. There were also locomotion concerns, as was discussed earlier, as the rover

could not turn while walking. So the GUI only has the controls Forward, Reverse, turn-Left, and

turn-Right. Our goal is to implement an Xbox or PlayStation controller allowing the user 360

degrees of control, with the ability to change direction while moving. We wish to eliminate the

need to enter the number of steps prior to moving. A simple push of the joystick will command

the rover to move.

B.3.2 – Communications and Networking

To establish communication between the cameras and computing systems on the rover and the

Mission Control server located at the college detailed networking protocol is desired. The figure

below displays the design of the network. The blocks on the right represent (top to bottom) the

rover arm, locomotion and cameras.

Figure 26 -- Communication Block Diagram

Team 11 - 8

As the above figure shows, communications via SSH (Secure Shell) were established between

the on-rover computers and the mission control computer; communication via HTTP (Hypertext

Transfer Protocol) was used to link the cameras to mission control. In last year’s case, both the

mission control computer and networked hardware on the rover are behind NAT (Network

Address Translation) firewalls. The NAT firewall prevents all incoming connections to all the

devices.

B.3.3 – SEM and Locomotion Computers

In last year’s design, the communications system was put together in more haste than what

would have been ideal. For one, the mission control operated from a student’s apartment. Also,

the on-rover router used was a G-type router leading to limited bandwidth. Looking at last year’s

issues, a lack of bandwidth may have contributed to the issues of last year’s team, such as

lagging and dropped communications. Additionally, the video feed would be impaired by a low-

resolution, which normally would be used in cases where the bandwidth was limited. To

counteract these issues, a higher grade router will be used. Last year’s router, the TP-Link TL-

MR3430 (pictured below) was a fine router for home usage, but a higher grade router would do

the project well.

Figure 27 -- Communication Between User and Raspberry Pi

Figure 28 -- Left: Type G Router Right: Type N Router

Team 11 - 9

The router’s function was so that the user could communicate with the Raspberry Pi computers.

Raspberry Pi’s are now 3G compatible, but using a router makes the connection between the user

and the Pi computers more secure. As will be discussed below, we plan on using a 4G network

for this year’s design. The TP-LINK SafeStream TL-ER6020 Gigabit Dual-WAN VPN Router

(pictured below) is an ideal router to use with a 4G card. It is a next generation, the N-type. It

creates a VPN (Virtual Private Network) thus adding more security by securing an IP address,

and preventing interference from other addresses. Additionally, the router is much more

powerful, with enough bandwidth to spare.

B.3.4 – Networks

In order to further improve the design, some other minor modifications are necessary. This year’s

team will make the mission control router the DNS-enabled router. Last year, the team did not

take care to make sure only one router was DNS-enabled. Also, some issues arose that were out

of the control of the team. The team relied on Verizon’s 3G network as there was a tower near

the site. Ironically, the 3G network had issues on the day of the competition. This year’s team

plans to incorporate 4G. While some 3G networks are faster than 4G networks, within a carrier,

4G always trumps 3G. For instance, Verizon 3G is faster than MetroPCS 4G, but Verizon’s 4G

is faster than its 3G. Verizon’s 3G network is actually relatively poor when compared to other

network speeds with download and upload speeds 1.05 and 0.75 Megabits per second (Mbps)

respectively However, Verizon’s 4G network showcases a vast improvement over its predecessor

with download and upload speeds of 7.35 and 5.86 Mbps respectively. These speeds are bested

only by AT&T’s network. Verizon’s network is advantageous in part due to the tower nearby the

competition site. We plan on using 2 Verizon 4G USB sticks, 1 on the rover, and 1 at mission

control.

Figure 29 -- Verizon 4G USB Stick (left) AT&T 4G USB Stick(right)

We are going to strive for as much redundancy with the platform due to some issues that arose

last year. The Verizon Network was down that day, much to the team’s dismay. Using AT&T’s

network is an option we are strongly considering in case Verizon’s network fails this year. We

will use the same communications model as with the 4G, but we will not utilize it unless

Verizon’s network fails. This practice ensures we are not sending conflicting commands to the

Team 11 - 10

rover, which may cause serious ramifications, such as the robot’s malfunction. Since Houston is

a major city, using AT&T may very well be the way to go.

B.4 Controls Concept Development

Last year’s six legged design had the necessary tools for traversing the competition grounds, but

there is still work to be done to allow the rover to move more freely and efficiently through the

different terrains. The rover was only able to turn while stationary, and walk directly

forwards/backwards.

Figure 30 – Proposed six legged device. The legs are labeled (and will be referenced as) 0 through 5.

This year, the team will be attempting to implement a turn while walking function, a turn while

climbing function, a more precise turning function, and a “lay-down-nudge” function. These will

all be controlled by a wireless controller instead of the GUI interface which was used last year.

B.4.1 – Turn While Walking

Front

When the robot walks in a straight line, the 0, 2, and 4 legs will be coupled together (call them

set A), sharing the same movements. The 1, 3, and 5 legs will also be coupled (set B), and they

will move at exactly 180° phase difference from set A. To be precise, this means that while one

Leg 0 (A) Leg 3 (B)

Leg 1 (B) Leg 4 (A)

Leg 2 (A) Leg 5 (B)

Figure 31 -- Aerial view of the robot to display the leg's labels and their respective groups

Team 11 - 11

set is pointing directly downward, in its peak contact with the ground, the other set will be

directly upright, at its highest point.

 2π

 0
𝑇

4

3𝑇

4
 T

To understand the locomotion further, one must understand the Buehler clock. The Buehler clock

describes the relationship between the speed of the leg and its location in its rotation. When any

given set of legs are on the ground, they must move slower than when they are in the air, so that

the other legs can “catch” the robot right as they are leaving the ground stage. Figure 13 shows

this relationship. The slope of the lines describes the speed of the legs rotation, the y axis

describes the location in the legs rotation, and the x axis describes time. Notice that the legs

change speeds at T/4 and (3T)/4. Notice that in this image, both sets of legs start and end at 0 and

2π respectively.

Now that walk is understood, turn while walking must be implemented. One’s immediate

response to implementing turn while walking is to increase the speed of one side of the legs and

thus create a turn. This design was considered but quickly failed when it was hypothesized and

proven that the rover would simply fall over, since the legs would lose their coupling over time.

The next idea was to adjust the phase at which the left legs differ from the right legs. For

example, put leg 1 20° ahead of legs 3 and 5, while simultaneously putting leg 4 20° behind legs

0 and 2. This will cause the left legs (the ones that are ahead) to hit the ground slightly before the

right legs leave the ground. For the second that the legs are together on the floor, there will be a

slight turning motion to the right, and then the robot will continue to move forward once the left

legs catch up (at which point the other set of legs will have lifted into the air).

B.4.2 – Turn While Climbing

Turning while climbing is very similar to turning while walking, but with an extra hurdle.

Walking on flat land is simple, if the legs are in phase, they will move forward with no problem.

However, on a small hill, the rover has a tendency to turn with the hill as it climbs. To adjust for

this, a separate hill climbing function was created and is currently functioning on the rover.

This function must now be added to. Just as with the turn while walking, the team wants to make

the robot more agile when on a hill. It seems likely that adjusting the phase just as was done in

Figure 32 -- Buehler Clock graph for both sets of legs (Red = A, Black = B)

Team 11 - 12

the turn while walking will resolve this issue and become extremely helpful in climbing hills

quickly.

B.4.3 – Precision Turns

Currently, precision turns are working, but not for slight turns. The reason for this is that the

robot is defined to work in “steps”. Every time the precision turn function is called, a number of

steps must be input to the rover. The robot then takes this many “steps” to that direction, without

moving forwards or backwards.

Currently, it takes the robot six steps to completely turn around an approximate 180°. This means

that for each step that the robot is instructed to take; it is currently turning roughly 30°. This is

great for a machine which wants to turn quickly, but extremely non-ideal for one which wants to

pick up rocks, and precisely position a gripper to easily pick up those rocks. The turn must be

worked on so that it can be more precise for angles lower than 30°.

To do this, the robot will have to be programmed to be able to take a “half step”, or maybe even

a “quarter step”. Currently, a step is counted every single time a set of legs gets off of the floor,

so every time a set of legs makes a full rotation, it is two steps. This means that part of the

problem comes from the fact that the legs are long. Downsizing to the smaller machines should

serve as a partial solution to the problem, but it might not be enough. On a more core level,

however, there are two options to create a precise precision turn. Steps will either be redefined in

the current function or a new function will have to be written which can input fractional steps,

and thus allow the rover to stop its rotation mid-step.

B.4.4 – “Lay-Down-Nudge” Function

A new idea which is going to be attempted this year is to implement a nudge while laid down

function. Last year’s team discovered that the most efficient way for the rover to pick up objects

is to lay it down and then operate the arm and gripper. This causes a problem, however, because

if the robot lies down and is slightly out of position, a complete repositioning of the machine is

required. This means it has to completely stand up and relocate to a hopefully better position.

Team 11 - 13

Figure 33 -- SpaceHex laying down

To combat this, a “nudge” function will be implemented. The rover will very quickly push the

legs into the ground, creating lift and hopefully pushing the robot backwards. This could also be

implemented to just the left or right legs, which will allow the robot to turn slightly even though

it is lying down.

The advantages to this could be incredibly evident, since the team which collects the most rocks

gets the most points. Last year’s team was only able to collect one rock because of how hard it

was to correctly position the rover over a rock.

B.4.5 – Control through Gaming Controller

Using a GUI (graphical user interface) was reasonable for last year’s machine, but this year a

more user-friendly interface is going to be implemented. All options are being considered, so

long as it is a wireless controller. Some ideas have been discussed, but the most common ones

are gaming controllers.

Figure 34 -- Common Gaming Controllers

Team 11 - 14

The advantage to these types of controllers is extremely evident. There are so many ways which

these controllers could be of use to the rover. First and foremost, there must be a way to control

the locomotion of the machine, while simultaneously controlling the arm of the machine.

The current machine is designed to operate in locomotion until a rock is spotted and gone after.

The machine lies down before the arm is activated. This is a good design, and allows for the

machine to perform both tasks. On startup, the controller can be in “locomotion mode.” In this

mode, the left analog sticks will be used to control the robots forward and backward motion,

while the right analog stick is going to control the left and right motion. This will allow the

controller to control speed, direction, and intensity of every motion the machine makes. When

the robot enters “lie down mode” (i.e. after pressing ‘X’), the robot can use the joysticks to

control the arm. The vast numbers of buttons can allow the robot to perform different tasks such

as “drop arm” and “nudge backwards”.

The biggest problem with this design is that the current code for the rover isn’t dynamic enough

for this control mechanism. The robot moves with each command, and does not allow any

commands to be input until the command finishes its execution. A controller is constantly

changing commands (with a joystick). This can be worked around by making the code more

dynamic and allowing commands to change throughout. This is usually easily accomplished by

enabling interrupts in the code, which will be attempted.

Team 11 - 1

Appendix C – Decision Matrices

C.0 Decision Matrices
After considering the designs above, the team created the following decision matrices to make

our selection.

C.1 Arm Selection
Table 4 -- Arm Design Decision Matrix

Robotic Arm

 Rank Weight 2 DOF 3 DOF w/ 1

planar

3 DOF all

revolute

 Value Score Value Score Value Score

Weight 1 0.25 7 0.175 8 0.200 9 0.225

Size 8 0.02 5 0.010 7 0.014 8 0.016

Controllability 6 0.06 10 0.060 8 0.048 6 0.036

Speed 4 0.15 7 0.105 7 0.105 8 0.120

Reliability 3 0.17 9 0.153 7 0.119 6 0.102

Autonomous 7 0.04 9 0.036 7 0.028 6 0.024

Reach 2 0.21 5 0.105 7 0.147 8 0.168

Cost 5 0.10 8 0.080 7 0.07 6 0.06

 0.724 0.731 0.751

Total 0.724 0.731 0.751

Description of Design Factors

Weight – The weight of the overall rover design greatly affects the score teams receive at

competition. The weight of the arm mechanism therefore has the most weight in our decision

Reach – Once the rover has gotten close to a rock, the amount of reach it has becomes important.

Being able to grab a rock that is far away from the rover will reduce the time needed to collect

rock samples.

Reliability – The reliability of the arm is also very important. Several teams, who were selected

to compete in the competition, could not do so because some part of their system failed the day

before of the day of competition.

Speed – The rate at which the arm goes from stowed position to the position of the sample and is

important to improve the overall speed of sample acquisition.

Cost – As a school project, cost is a factor. The more expensive the design, the harder it will be

to receive the necessary funds to construct the design.

Controllability – The difficulty to move the arm from one point to a new point. The difficulty of

mapping from robots joints frames to the x y z coordinate frame.

Team 11 - 2

The difficulty in making the system autonomous – The difficulty in making the system almost

completely autonomous. With autonomous control, less work will be required to command the

arm and acquire the rock samples, saving time on collection.

Size – The overall size of the design needs to fit within certain size requirements. The robotic

arm cannot exceed these specifications, but as long as the design does, the arm’s size is not

critical.

C.2 Gripper Selection
Table 5 -- Gripper Design Decision Matrix

Gripper Design

 Rank Weight Scooper Pincer Complaint

Finger

Complaint

Mesh

 Value Score Value Score Value Score Value Score

Weight 6 0.05 3 0.015 7 0.035 5 0.025 3 0.015

Size 4 0.10 5 0.050 9 0.090 7 0.070 5 0.050

Speed 7 0.03 7 0.021 3 0.009 4 0.012 5 0.015

Reliability 3 0.20 7 0.140 3 0.060 3 0.060 5 0.100

Tolerance 1 0.30 9 0.270 1 0.030 3 0.090 8 0.240

Precision 2 0.25 1 0.025 9 0.225 9 0.225 7 0.158

Cost 5 0.07 9 0.063 7 0.049 5 0.035 7 0.049

Total 0.584 0.498 0.517 0.627

Description of Design Factors

Tolerance – Tolerance is the grippers ability to pick up the same rock from multiple different

positions and orientations

Precision – Precision is the gripper’s ability to selectively pick up a single rock without picking

up any other material.

Reliability – The Reliability of the gripper is its consistence in working for the same rock and for

no component on the gripper to fail.

Size – The size of the gripper affects the size of the arm and the motors needed for the arm.

However, the larger the size, the more area the gripper has to use to grab samples.

Cost – Cost is the difference in cost for the components of the grippers

Weight – Weight is similar to size and affects the size and motors needed for the arm

mechanism.

Speed – Speed is the amount of time it takes the grippers to close onto a rock and acquire it.

Team 11 - 1

Appendix D – Detailed Design and Design for Manufacturing

D1.0 – SEM Prototyping

 One of the key goals of the project was to develop designs quickly and prototype the

most viable design concepts. The prototype could then be tested to establish the capabilities and

weakness of the initial design, which will allow further prototypes to correct for the weakness

encountered in the initial design without significant investment into a sign design.

 The initial designs show in Figure 19 uses 4 servos to control the various joints of the

arms, and has each servo placed at the joint it controls. This design was created to reduce the

difficulty of the control needed to program and control the robotic arm. Servo’s are actuated by

providing a desired position in the form of a pulse width, then the servo has its own built in

control to maintain the position. Placing the motors on the joint it will actuate translates to the

position of the motor being the same as the position of the arm.

 Our initial prototype, shown in Figure 19 utilized servo controlled joints and was built to

a relative ½ scale of our expected design. The prototype was constructed using ABS plastic

which was laser cut for rapid manufacturing. The design showed some flaws with the initial

concept, which were the servos preprogrammed control could not accurately maintain a position

when it was strained toward the limit of its torque capability. It was evident the torque capability

of the servos would be insufficient for the full scale robotic arm.

Figure 35 -- Initial Design CAD and Prototype

 The arm was then redesigned to rectify the issues of the initial design. The solutions were

to use DC motors, which require more complex control algorithms but can produce significantly

more torque. By using DC motors, the control algorithm can be tuned so the arm will maintain

the exact desired position in situation which are below the torque limit of the motor. Selecting a

DC motor for the various joints require analysis to determine the amount of torque necessary for

each joint while keeping the weight of the arm light. The motor selection is described in section

D.2.2. The second solution was to move the motor on the elbow joint to the base and use some

form of linkage or chain drive to actuate the joint. These design changes led to the second

generation design.

Team 11 - 2

Figure 36 -- Second Generation Design

 Once DC motors were selected and the motor placement was determined, the second-

generation design was created. The scale model showed we needed to reduce the amount of

weight the motors need to actuate to allow readily available motors to be utilized. The initial

design used a 3 feet reach, which was designed to require minimal precision of the rover to

acquire samples, however, the design was shortened to 2 feet to reduce the torque requires at the

base joint to support and accelerate the arm through its range of motion.

 The design has a chain drive to drive the second joint. A chain drive was selected to

provide the closest simulation of direct drive. Only the relative sizes of the sprockets, which are

going to be the same, are needed to be added the position of the motor. A chain drive was

selected over a belt drive for durability and for the reliability in cold temperatures expected on

mars.

D1.1 – FEM Analysis

 FEM analysis was used to determine the amount of deflection and the stresses which the

beams would experience during the competition. The deflection is important in maintaining a

mapping from the base of the arm to the location of the gripper based on just the positions of the

motors which will be directly measured using encoders. The FEM analysis is shown below. The

deflection measured was 0.0036in which is small enough to not affect the ability of the gripper to

move to a set location. The stress analysis showed the max stress was 309.38 psi which is below

the modulus of elasticity of Aluminum 6063 which is 10000 ksi.

Team 11 - 3

D1.2 – Motor Analysis

 The amount of torque necessary was determined by assuming the arm was in its worst

case scenario and determining the forces on the arm. The arms were represented by a distributed

mass, the motors were evaluated as point masses at their location. The equations for the torque at

any point were then calculated in Matlab and plotted to visualize the torque requirements through

the entire range of motion.

 The base motors selected were a RE 40 ∅40 mm, Graphite Brushes, 150 Watt with a

Planetary Gearhead GP 42 C ∅42 mm, 3–15 Nm. This combination of a 170 mNm motor with a

113:1 planetary gearbox provides allows the motor to provide 15 Nm of torque nominally. The

expected load determined in the worst case scenario is 10 Nm. Since these motors are going to be

installed at the base, their weight will not affect the torque requirements.

 The motors for the wrist and the gripper do not require significant torque, the requirement

determined was 3 kg-cm, but the motor weight will affect the torque of the base motors.

Therefore, the Pololu 298:1 Micro Metal Gear motor was selected because it was the lightest

weight motor that could provide the necessary torque.

D2.0 – Gripper Prototyping
 The work done to prototype the gripper has produced several working prototypes. The

first generation was a proof of concept which was actuated by hand. It gave us a sense of the

amount of effort a motor would need to provide and some of the manufacturing issues we would

face with producing a gripper with compliant materials. The material for the elastic gripper was

initial chosen to be rubber bands for simplicity.

Figure 37 -- First Generation Gripper Prototype

 The second generation model was produced using rapid prototyping techniques.

Cardboard was used as the construction material, for it is free from the local hardware store and

when paired with hot glue can produce a reasonably strong structure. The prototype used a servo

mechanism to actuate the gripper and an elastic first aid tape for the elastic material. With this

gripper, we were able to test the design and see the design pick up rock samples. While the

prototype was able to pick up rocks, the cardboard caused some issues which were resolved in

the current prototype.

Team 11 - 4

Figure 38 -- Second Generation Gripper Prototype

 The current gripper prototype, which appears to work as our final version used ABS

plastic for the frame and linkages. The ABS was used to make gear which keep the linkages at

the same location through the range of motion. The elastic material was changed to silicon

rubber, which will remain elastic at the temperatures expected on mars. The design also utilize

the pololu motor and was shown to prove powerful enough to pick up rocks larger than expected

at the competition.

Figure 39 -- Third Generation Prototype

Team 11 - 1

Appendix E – Programming and Control Implementation

E1.0 –Xpadder
Once the SDL is imported onto the SD card and implemented, the next step is transferring those

commands from the keyboard to the actual XBOX controller. Using a free program called

Xpadder, this is not only possible, but it is easy to implement.

Figure 40 -- Example of Xpadder Interface

 Xpadder is a software application which allows a controller to emulate a keyboard. The

user must upload a picture of the controller to the program, and then map the buttons to

whichever keyboard button they wish. The computer will then read the button presses as key

presses, and thus the computer will act normally as if that button was pressed on the keyboard.

 With the combination of Xpadder and SDL, the rover will be able to take commands

directly from the XBOX controller. By simply mapping the joystick to the forward, backward,

left and right buttons on the keyboard, the rover will be able to walk continuously until the

joystick is released. This will allow for real-time control and a dynamic rover, as intended.

E2.0 – SDL Library
 Currently, the rover is being controlled through the command prompt on a laptop. While

this is a functioning design, it is not ideal since there are huge delays between inputs and they are

not intuitive. To improve the rover’s locomotion and control, an XBOX controller will be

implemented in order to reduce delays between commands, essentially controlling the rover in

real-time.

 In order to achieve this, low level keyboard access and event handling are necessary.

Simple DirectMedia Layer (SDL) is a library written in C which enables both keyboard access

and event handing to the user. With this, the user will be able to control the rover by simply

pressing buttons on the keyboard (i.e. holding w will move the rover forward) as opposed to

typing entire commands to the command prompt. The code will then have to be re-written in

order to allow for real-time control, which means the implementation of a dynamic function with

either interrupts or continuous looping of the walk function.

Team 11 - 1

Appendix F – Source Code

F1.0 – Static Switch Main.c
 1/***/
 2 #include <stdlib.h>

 3 #include <stdio.h>

 4 #include <unistd.h>

 5 #include <math.h>

 6 #include "motor.h"

 7 #include "buehler.h"

 8

 9 //void printHelp();

 10 void applyHold(int holdPos)

 11 {

 12 FILE * fp;

 13 fp = fopen("/root/src/holdTxt.txt" ,"w");

 14 fprintf(fp,"1 %d", holdPos);

 15 fclose(fp);

 16 }

 17

 18 void rmHold()

 19 {

 20 FILE * fp;

 21 fp = fopen("/root/src/holdTxt.txt","w");

 22 fprintf(fp, "0 0");

 23 fclose(fp);

 24 delay(1000);

 25 }

 26

 27 int main(int argc, char* argv[])

 28 {

 29 struct timeval tv = {.tv_sec = 0, .tv_usec = 0};

 30 int ipos[6] = {0}, mpos[6] = {0}, duty[6] = {0x00};

 31 int rpm,steps,angles,phase_offset,stepPhase_time,i;

 32 char dir,turn_dir;

 33

 34 //Initialize SPI,UART,DecoderRst pin,EmergencyStop pin

 35 Init(0,8000000,6,5);

 36

 37 if(argc == 1)

 38 {

 39 // printHelp();

 40 return(0);

Team 11 - 2

 41 }

 42

 43 else

 44 {

 45 rmHold();

 46 switch(*(++argv[1]))

 47 {

 48 case 'v': printf("Hill Gait\n");

 49 sscanf(argv[2],"%d",&rpm);

 50 sscanf(argv[3],"%d",&steps);

 51 moove(10,'F','A',OFFSET2);

 52 hillGait(rpm,'F',steps);

 53 moove(10,'F','A',OFFSET2);

 54 applyHold(OFFSET2);

 55 break;

 56

 57 case 's': printf("LETS CLIMB STAIRS\n");

 58 sscanf(argv[2],"%d",&rpm);

 59 sscanf(argv[3],"%d",&steps);

 60 //move(10,'F','F',OFFSET3);

 61 printf("Finished F\n");

 62 //move(10,'F','M',OFFSET1);

 63 printf("Finished M\n");

 64 //move(10,'F','B',OFFSET4);

 65 printf("Finished B\n");

 66 stair(rpm,steps);

 67 break;

 68

 69 case 'q': printf("Turn during Locomtion\n");

 70 sscanf(argv[2],"%d",&rpm);

 71 sscanf(argv[3],"%c",&dir);

 72 sscanf(argv[4],"%d",&steps);

 73 sscanf(argv[5],"%d",&angles);

 74 moove(10,'H',1,OFFSET2);

 75 walk_turn(rpm,dir,steps,angles,0);

 76 moove(10,'F','A',OFFSET1);

 77 applyHold(OFFSET1);

 78 break;

 79

 80 case 'z': printf("Precision Turn\n");

 81 sscanf(argv[2],"%d",&rpm);

 82 sscanf(argv[3],"%c",&dir);

 83 sscanf(argv[4],"%d",&steps);

 84

Team 11 - 3

 85 if(dir == 'R')

 86 moove(10,'H',1, OFFSET2);

 87 else

 88 moove(10,'H',0, OFFSET2);

 89

 90 turn(rpm,dir,steps);

 91 moove(10,'H','A',OFFSET1);

 92 applyHold(OFFSET1);

 93 break;

 94

 95 case 'w': printf("WALK\n");

 96 sscanf(argv[2],"%d",&rpm);

 97 sscanf(argv[3],"%c",&dir);

 98 sscanf(argv[4],"%d",&steps);

 99 moove(10,'H',1,OFFSET2);

100 walk(rpm,dir,steps,0);

101 moove(10,'F','A',OFFSET1);

102

103 applyHold(OFFSET1);

104 break;

105

106 case 't': printf("TURN\n");

107 sscanf(argv[2],"%d",&rpm);

108 sscanf(argv[3],"%c",&dir);

109 sscanf(argv[4],"%d",&steps);

110 moove(10,'H',1,OFFSET2);

111 walk(rpm, dir, steps,0);

112 moove(10,'F','A',OFFSET1);

113 applyHold(OFFSET1);

114 break;

115

116 case 'c': printf("CALIBRATE\n");

117 duty[0] =

duty[1]=duty[2]=duty[3]=duty[4]=duty[5] = -3;

118 driveAllMotors('B',duty);

119 delay(6000);

120 stopMotors();

121 break;

122

123 case 'u': printf("STAND\n");

124 moove(10,'F','A',OFFSET1);

125 applyHold(OFFSET1);

126 break;

127

Team 11 - 4

128 case 'l': printf("LIE\n");

129 moove(10,'F','A',OFFSET1);

130 moove(5,'F','A',2000);

131 break;

132

133 // case 's': printf("ESTOP\n");

134 // stopMotors();

135 // break;

136

137 case 'r': printf("RESETDEC\n");

138 resetAllDecoders();

139 break;

140

141 case 'h': printf("HOLD\n");

142 applyHold(0);

143 break;

144

145 case 'b': printf("REMOVE HOLD\n");

146 rmHold();

147 break;

148

149 case 'm': printf("POSITION\n");

150 readAllMotorPos(mpos);

151 printf("mpos0: %d, mpos1: %d, mpos2: %d,

mpos3: %d. mpo s4: %d, mpos5: %d\n",

mpos[0],mpos[1],mpos[2],mpos[3],mpos[4],mpos[5]);

152 break;

153

154 case 'x': printf("TEST\n");

155 /*walk(10,'F',3);

156 duty[0] = duty[1]=duty[2]=duty[3]=duty[5] =

0;

157 duty[3] = 40;

158 driveAllMotors('F',duty);

159 delay(4000);

160

161 duty[0] = duty[1]=duty[2]=duty[3]=duty[4] =

0;

162 duty[5] = 40;

163

164 driveAllMotors('F',duty);

165 delay(4000);

166 duty[0] =

duty[1]=duty[2]=duty[3]=duty[4]=duty[5] = 0;

Team 11 - 5

167 driveAllMotors('F',duty);

168 break;

169 */

170 default : printf("**Invalid option**\n");

171 break;

172 }

173 }

174 return 0;

175 }

Team 11 - 6

F2.0 – Dynamic Switching Main.c (GET_CH_Test.c)
 1 #include <stdlib.h>

 2 #include <stdio.h>

 3 #include <unistd.h>

 4 #include "motor.h"

 5 #include "buehler.h"

 6 #include <curses.h>

 7

 8 void applyHold(int holdPos)

 9 {

 10 FILE * fp;

 11 fp = fopen("/root/src/holdTxt.txt" ,"w");

 12 fprintf(fp,"1 %d", holdPos);

 13 fclose(fp);

 14 }

 15

 16 void rmHold()

 17 {

 18 FILE * fp;

 19 fp = fopen("/root/src/holdTxt.txt","w");

 20 fprintf(fp, "0 0");

 21 fclose(fp);

 22 delay(1000);

 23 }

 24

 25 void preprocess()

 26 {

 27 struct timeval tv = {.tv_sec = 0, .tv_usec = 0};

 28 int ipos[6] = {0}, mpos[6] = {0}, duty[6] = {0x00};

 29 Init(0,8000000,6,5);

 30 rmHold();

 31 }

 32

 33 int stepcount = 1;

 34 int oddstep = 0;

 35 int INIT_STEP = 0;

 36

 37 int main()

 38 {

 39 initscr();

 40 refresh();

 41 cbreak();

 42 noecho();

 43 halfdelay(5);

Team 11 - 7

 44 keypad(stdscr,TRUE);

 45 refresh();

 46 endwin();

 47 int fish;

 48 char ch = 'm';

 49 int angles = 5;

 50 int rpm = 20;

 51 char dir = 'F';

 52 int steps = 1;

 53 int duty[6] = {0x00};

 54

 55 preprocess();

 56 resetAllDecoders();

 57

 58 preprocess();

 59 while(ch != 27)

 60 {

 61 preprocess();

 62 initscr();

 63 refresh();

 64 flushinp();

 65 ch = wgetch(stdscr);

 66 refresh();

 67 endwin();

 68 switch(ch)

 69 {

 70 case 'w':

 71 // Forward

 72 if (stepcount % 2 == 0)

 73 oddstep = 0;

 74 else

 75 oddstep = 1;

 76 initscr();

 77 refresh();

 78 flushinp();

 79 ch = wgetch(stdscr);

 80 refresh();

 81 endwin();

 82 //printf("BEFORE RESET");

 83 walk(rpm,'F',0, oddstep);

 84 //printf("AFTER RESET");

 85 while (ch == 'w')

 86 {

 87 //printf("BEFORE: Oddstep is: %d\n",oddstep);

Team 11 - 8

 88 //if (oddstep == 0)

 89 walk(rpm,'F',steps/*1*/,oddstep);

 90 //else

 91 //walk(rpm,'F',steps,1);

 92 ++stepcount;

 93 //printf("Step count is %d\n", stepcount);

 94 printf("Inside the w while loop\n");

 95 initscr();

 96 refresh();

 97 flushinp();

 98 ch = wgetch(stdscr);

 99 refresh();

100 endwin();

101 }

102 //printf("Outside the w while loop\n");

103 break;

104

105 case 's':

106 // Backwards

107 if (stepcount % 2 == 0)

108 oddstep = 0;

109 else

110 oddstep = 1;

111 //printf("Oddsteps is %d\n",oddstep);

112 initscr();

113 refresh();

114 flushinp();

115 ch = wgetch(stdscr);

116 refresh();

117 endwin();

118 walk(rpm,'F',0,oddstep);

119 while(ch == 's')

120 {

121 //if (oddstep == 0)

122 walk(rpm,'B',steps,oddstep);

123 //else

124 //walk(rpm,'B',steps,1);

125 ++stepcount;

126 //printf("Step count is: %d\n",stepcount);

127 printf("Inside the s while loop\n");

128 initscr();

129 refresh();

130 flushinp();

131 ch = wgetch(stdscr);

Team 11 - 9

132 refresh();

133 endwin();

134 }

135 break;

136

137 case 'a':

138 //left

139 if (stepcount % 2 == 0)

140 oddstep = 0;

141 else

142 oddstep = 1;

143 initscr();

144 refresh();

145 flushinp();

146 ch = wgetch(stdscr);

147 refresh();

148 endwin();

149 walk(rpm,'F',0,0);

150 while (ch == 'a')

151 {

152 walk(rpm,'L',steps,oddstep);

153 ++stepcount;

154 initscr();

155 refresh();

156 printw("Inside the a while loop\n");

157 flushinp();

158 ch = wgetch(stdscr);

159 refresh();

160 endwin();

161 }

162 break;

163

164 case 'd':

165 //right

166 if (stepcount % 2 == 0)

167 oddstep = 0;

168 else

169 oddstep = 1;

170 initscr();

171 refresh();

172 flushinp();

173 ch = wgetch(stdscr);

174 refresh();

175 endwin();

Team 11 - 10

176

177 walk(rpm,'F',0,0);

178 while (ch == 'd')

179 {

180 walk(rpm,'R',steps,oddstep);

181 ++stepcount;

182 initscr();

183 refresh();

184 printw("Inside the d while loop\n");

185 flushinp();

186 ch = wgetch(stdscr);

187 refresh();

188 endwin();

189 }

190 break;

191

192 case 'u':

193 // Speed UP

194 printf("Previous RPM = %d\n", rpm);

195 if(rpm < 26)

196 rpm += 5;

197 else

198 rpm = 30;

199 printf("Current RPM = %d\n", rpm);

200 break;

201

202 case 'j':

203 // Speed DOWN

204 printf("Previous RPM = %d\n", rpm);

205 if(rpm > 14)

206 rpm -= 5;

207 else

208 rpm = 10;

209 printf("Current RPM = %d\n",rpm);

210 break;

211

212 case 'i':

213 // Angles up

214 printf("Previous angles = %d\n", angles);

215 if (angles < 10)

216 ++angles;

217 else

218 angles = 10;

219 printf("Current Angles = %d\n",angles);

Team 11 - 11

220 break;

221

222 case 'k':

223 // Angles Down

224 printf("Previous angles = %d\n",angles);

225 if (angles > 0)

226 --angles;

227 else

228 angles = 0;

229 printf("Current Angles = %d\n",angles);

230 break;

231

232 case 'q':

233 // Turn while walking - Left

234 if (stepcount % 2 == 0)

235 oddstep = 0;

236 else

237 oddstep = 1;

238 //printf("Oddsteps is %d\n",oddstep);

239 initscr();

240 refresh();

241 flushinp();

242 ch = wgetch(stdscr);

243 refresh();

244 endwin();

245 walk_turn (rpm,dir,0,0,oddstep);

246 while (ch == 'q')

247 {

248 walk_turn(rpm,'L',steps,angles,oddstep);

249 ++stepcount;

250 initscr();

251 refresh();

252 printw("Inside the q while loop\n");

253 flushinp();

254 ch = wgetch(stdscr);

255 refresh();

256 endwin();

257 }

258 if (stepcount % 2 == 0)

259 oddstep = 0;

260 else

261 oddstep = 1;

262 if (oddstep == 0)

263 {

Team 11 - 12

264 moove(10,'F',1,OFFSET2);

265 moove(10,'H',0,OFFSET1);

266 }

267 else

268 {

269 moove(10,'F',1,OFFSET1);

270 moove(10,'H',0,OFFSET2);

271 }

272 break;

273

274 case 'e':

275 // Turn while walking - Right

276 if (stepcount % 2 == 0)

277 oddstep = 0;

278 else

279 oddstep = 1;

280 //printf("Oddsteps is %d\n",oddstep);

281 initscr();

282 refresh();

283 flushinp();

284 ch = wgetch(stdscr);

285 refresh();

286 endwin();

287 walk_turn(rpm,dir,0,0,oddstep);

288 while (ch == 'e')

289 {

290 walk_turn(rpm,'R',steps,angles,oddstep);

291 ++stepcount;

292 initscr();

293 refresh();

294 printw("inside the e while loop\n");

295 flushinp();

296 ch = wgetch(stdscr);

297 refresh();

298 endwin();

299 }

300 if (stepcount % 2 == 0)

301 oddstep = 0;

302 else

303 oddstep = 1;

304 if (oddstep == 0)

305 {

306 moove(10,'H',1,OFFSET2);

307 moove(10,'F',0,OFFSET1);

Team 11 - 13

308 }

309 else

310 {

311 moove(10,'H',1,OFFSET1);

312 moove(10,'F',0,OFFSET2);

313 }

314 break;

315

316 case 'c':

317 // EZ Calibrate

318 duty[0] = duty[1] = duty[2] = duty[3] = duty[4] =

duty[5] = -3;

319 while (ch == 'c')

320 {

321 driveAllMotors('B',duty);

322 delay(2000);

323 stopMotors();

324 initscr();

325 refresh();

326 printw("Inside the c while loop\n");

327 flushinp();

328 ch = wgetch(stdscr);

329 refresh();

330 endwin();

331 }

332 resetAllDecoders();

333 break;

334

335 case 'l':

336 // Lie Down

337 moove(10,'F','A',OFFSET1);

338 moove(5,'F','A',2000);

339 initscr();

340 refresh();

341 flushinp();

342 ch = wgetch(stdscr);

343 refresh();

344 endwin();

345 while((ch != 'l') && (ch != 27))

346 {

347 printf("Inside the l while loop, this is ch:

%c\n", ch);

348 initscr();

349 refresh();

Team 11 - 14

350 flushinp();

351 ch = wgetch(stdscr);

352 refresh();

353 endwin();

354 }

355 break;

356

357 default:

358 // Move back to stand

359 if (stepcount % 2 == 0)

360 oddstep = 0;

361 else

362 oddstep = 1;

363

364 moove(10,'F','A',OFFSET1);

365 stepcount = 0;

366 while (ch != 'l' && ch != 'c' && ch != 'w' && ch !=

's' && ch ! = 27 && ch != 'a' && ch != 'd' && ch != 'u' && ch

!= 'j' && ch != 'i' & & ch != 'k' && ch != 'q' && ch != 'e')

367 {

368 hold(OFFSET1);

369 initscr();

370 refresh();

371 flushinp();

372 ch = wgetch(stdscr);

373 refresh();

374 endwin();

375 }

376 if (ch != 27 && ch != 'u' && ch != 'j' && ch != 'i'

&& ch != 'k ' && ch != 'c' && ch != 'l')

377 {

378 moove(10,'H',1,OFFSET2);

379 }

380 break;

381 }

382 }

383 refresh();

384 endwin();

385 printf("Exiting the program peacefully human\n");

386 return 0;

387

388 }

389

Team 11 - 15

F3.0 – Buehler.h
 1

/***/

 2 #ifndef BUEHLER_H

 3 #define BUEHLER_H

 4

 5 #include <stdio.h>

 6 #include <stdlib.h>

 7 #include <sys/time.h>

 8 #include <curses.h>

 9

 10 #define OFFSET1 33852 //Offset for even triplet

 11 #define OFFSET3 22852 //OFFSET TEST

 12 #define OFFSET4 40852 //OFFSET TEST

 13 #define OFFSET2 12415 //Offset for odd triplet

 14 #define BOUND 50

 15

 16 struct timeval walks_turn_buehler(int rpm, char dir, int*

pos, int angl es, int stepcount);

 17 struct timeval stair_buehler(int rpm, int* pos);

 18 //Caculates the ideal Position

 19 struct timeval buehler(int rpm, char dir, int* pos, int

oddstepss)

 20 {

 21 // printf("IN BUEHLER = %d\n",oddstepss);

 22 static struct timeval startTime = {.tv_sec = -1, .tv_usec

= -1};

 23 struct timeval currTime;

 24 static int buehlerPeriod;

 25 static int T1,T2;

 26 int P1,P2;

 27

 28 //Initialize function if its the first call in the loop

 29 if(startTime.tv_sec == -1)

 30 {

 31 //Get start time

 32 gettimeofday(&startTime,NULL);

 33

 34 //Calculate buehler period

 35 buehlerPeriod = (int) (((float)(60)/rpm)*1000000);

 36

 37 //Calculate transition points

 38 T1 = (int) ((float)(buehlerPeriod)/4);

 39 T2 = buehlerPeriod - T1;

Team 11 - 16

 40 }

 41

 42 /*if (dir == 'U')

 43 {

 44 startTime.tv_sec = currTime.tv_sec;

 45 startTime.tv_usec = currTime.tv_usec;

 46 }

 47 */

 48 //Get current time

 49 gettimeofday(&currTime, NULL);

 50

 51

 52

 53 if (dir == 'U')

 54 {

 55 startTime = currTime;

 56 startTime.tv_sec = currTime.tv_sec;

 57 startTime.tv_usec = currTime.tv_usec;

 58 }

 59

 60

 61 //Caculate the current buehler phasor

 62 unsigned long long buehlerPhase = (unsigned long long)

((currTime.tv_ sec - startTime.tv_sec)*1000000 +

 63 (currTime.tv_usec -

startTime.tv_us ec)) % buehlerPeriod;

 64 //printf("buehlerPeriod : %d, beuhlerPhase %d startTime %f

currTime % f\n", buehlerPeriod, buehlerPhase,

startTime.tv_usec, currTime.tv_usec/ *Int*/);

 65 //printf("before IF %d\n", oddstepss);

 66 if (oddstepss == 1 && dir != 'U')

 67 {

 68 //printf("You wrong%d\n", oddstepss);

 69 buehlerPhase = (buehlerPhase + (buehlerPeriod/2)) %

buehlerPeriod;

 70 }

 71 // printf("Buehler/2 = %d, buehlerPhase = %d, oddstep =

%d\n", (buehle rPeriod/2), buehlerPhase, oddstepss);

 72 // printf("buehlerPeriod : %d, beuhlerPhase %d startTime %f

currTime % f\n", buehlerPeriod, buehlerPhase,

startTime.tv_usec, currTime.tv_usec/ *Int*/);

 73 //Get positions of both buehler cycles

 74 //printf("after IF %d\n", oddstepss);

 75 /*if (oddstep == 0)

Team 11 - 17

 76 {*/

 77 if(buehlerPhase <= T1)

 78 { P1 = ((int)

(((float)(1)*NUM_POS*buehlerPhase)/(3*buehlerPeriod))) %

NUM_POS;

 79 P2 = ((int)

(((float)(5)*NUM_POS*buehlerPhase)/(3*buehlerPeriod))) %

NUM_POS; }

 80 else if (buehlerPhase < T2)

 81 { P1 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T1))/(3*buehlerPe riod)) + ((float)(1)*NUM_POS)/12)) %

NUM_POS;

 82 P2 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T1))/(3*buehlerPe riod)) + ((float)(5)*NUM_POS)/12)) %

NUM_POS; }

 83 else

 84 { P1 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T2))/(3*buehlerPe riod)) + ((float)(11)*NUM_POS)/12)) %

NUM_POS;

 85 P2 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T2))/(3*buehlerPe riod)) + ((float)(07)*NUM_POS)/12)) %

NUM_POS; }

 86 //}

 87 /*else

 88 {

 89 if(buehlerPhase <= T1)

 90 { P2 = ((int)

(((float)(1)*NUM_POS*buehlerPhase)/(3*buehlerPeriod))) %

NUM_POS;

 91 P1 = ((int)

(((float)(5)*NUM_POS*buehlerPhase)/(3*buehlerPeriod))) %

NUM_POS; }

 92 else if (buehlerPhase < T2)

 93 { P2 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T1))/(3*buehler Period)) + ((float)(1)*NUM_POS)/12)) %

NUM_POS;

 94 P1 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T1))/(3*buehler Period)) + ((float)(5)*NUM_POS)/12)) %

NUM_POS; }

 95 else

 96 { P2 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T2))/(3*buehler Period)) + ((float)(11)*NUM_POS)/12)) %

NUM_POS;

Team 11 - 18

 97 P1 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T2))/(3*buehler Period)) + ((float)(07)*NUM_POS)/12)) %

NUM_POS; }

 98 }*/

 99 //printf("buehlerPeriod: %d, buehlerPhase: %llu, T1: %d,

T2: %d, iPos [0]: %d, iPos[1]: %d\n",buehlerPeriod,

buehlerPhase, T1, T2, pos[0], po s[1]);

100

101 //Adjust position with offset and direction

102 if(dir == 'B')

103 { pos[0] = pos[2] = pos[4] = NUM_POS - (P1 + (NUM_POS -

OFFSET1)) % N UM_POS;

104 pos[1] = pos[3] = pos[5] = NUM_POS - (P2 + (NUM_POS -

OFFSET2)) % N UM_POS; }

105 else if(dir == 'R')

106 { pos[0] = pos[2] = (P1 + OFFSET1) % NUM_POS;

107 pos[1] = (P2 + OFFSET2) % NUM_POS;

108 pos[3] = pos[5] = NUM_POS - (P2 + (NUM_POS - OFFSET2)) %

NUM_POS;

109 pos[4] = NUM_POS - (P1 + (NUM_POS - OFFSET1)) % NUM_POS;

}

110 else if(dir == 'L')

111 { pos[0] = pos[2] = NUM_POS - (P1 + (NUM_POS - OFFSET1)) %

NUM_POS;

112 pos[1] = NUM_POS - (P2 + (NUM_POS - OFFSET2)) % NUM_POS;

113 pos[3] = pos[5] = (P2 + OFFSET2) % NUM_POS;

114 pos[4] = (P1 + OFFSET1) % NUM_POS; }

115 else

116 { pos[0] = pos[2] = pos[4] = (P1 + OFFSET1) % NUM_POS;

117 pos[1] = pos[3] = pos[5] = (P2 + OFFSET2) % NUM_POS;

118 }

119

120 return(currTime);

121 }

122

123 //Walking Algorithm

124 void walk(int rpm, char dir, int numSteps, int oddsteps)

125 {

126 //printf("AFTER: Oddsteps is %d\n",oddsteps);

127 struct timeval tv = {.tv_sec = 0, .tv_usec = 0};

128 int ipos[6] = {0}, mpos[6] = {0}, duty[6] = {0},

done[6]={0};

129 int stepNum = 0, lpos = 0;

130

Team 11 - 19

131 if (numSteps == 0)

132 dir = 'U';

133

134 if((dir=='L') || (dir=='B'))

135 numSteps = numSteps;

136 else if (dir == 'U')

137 tv = buehler(rpm,dir,ipos,oddsteps);

138 else

139 numSteps = numSteps+1;

140

141 //Walk numSteps

142 while(stepNum < numSteps)

143 {

144 // if (numSteps == 1)

145 // dir = 'U';

146 tv = buehler(rpm,dir,ipos,oddsteps);

147 readAllMotorPos(mpos);

148

149 //printf("Init Pos = %d\n", *ipos);

150 //printf("Motor Pos = %d\n", *mpos);

151

152

153

154 PD(&tv,ipos,mpos,duty);

155 driveAllMotors('H',duty);

156

157

158 if((dir=='L') || (dir=='B'))

159 {

160 if((((OFFSET1 > (*ipos)) && (lpos >= OFFSET1))) ||

((OFFSET2 > (* ipos)) && (lpos >= OFFSET2)))

161 stepNum++;

162 lpos = *ipos;

163 }

164 else

165 {

166 if((((OFFSET1 < (*ipos)) && (lpos <= OFFSET1))) ||

((OFFSET2 < (* ipos)) && (lpos <= OFFSET2)))

167 stepNum++;

168 lpos = *ipos;

169 }

170 // printf("Init Pos = %d\n", *ipos);

171 // printf("Motor Pos = %d\n", *mpos);

172 // printf("NumSteps = %d\n",numSteps);

Team 11 - 20

173 // printf("stepNum = %d\n",stepNum);

174 }

175

176 //Ensure motors are stopped

177 stopMotors();

178 return;

179 }

180

181 //Ideal follower for moving legs angles less than 2*pi

182 struct timeval follower(int rpm, char dir, char legs, int

flag, int* sp os, int* pos)

183 {

184 static struct timeval startTime = {.tv_sec = -1, .tv_usec

= -1};

185 struct timeval currTime;

186 static int period;

187 int cpos;

188

189 //Get start time if not initialized

190 if((startTime.tv_sec == -1) || (flag == 1))

191 {

192 gettimeofday(&startTime,NULL);

193 period = (int) (((float)(60)/rpm)*1000000);

194 }

195

196 //Get current time and set all positions to ideal start

197 gettimeofday(&currTime, NULL);

198

199 //Calculate current phase position

200 unsigned long long phase = (unsigned long long)

((currTime.tv_sec - s tartTime.tv_sec)*1000000 +

201

(currTime.tv_usec - s tartTime.tv_usec)) % period;

202 cpos = (int) ((((float)(1)*NUM_POS*phase)/(period))) %

NUM_POS;

203

204 //Calculate position with start offset and proper

direction for all l egs

205 int i;

206 for(i = 0; i < NUM_MOTORS; i++)

207 if(dir == 'F')

208 pos[i] = (spos[i] + cpos) % NUM_POS;

209 else

Team 11 - 21

210 pos[i] = NUM_POS - (cpos + (NUM_POS - spos[i])) %

NUM_POS;

211

212 //If only 1 triplet is being driven zero the other triplet

213 if(legs == 0)

214 i = 1;

215 else

216 i = 0;

217

218 if (legs == 'F')

219 {

220 pos[1] = spos[1];

221 pos[2] = spos[2];

222 pos[4] = spos[4];

223 pos[5] = spos[5];

224 }

225 else if (legs == 'M')

226 {

227 pos[0] = spos[0];

228 pos[2] = spos[2];

229 pos[3] = spos[3];

230 pos[5] = spos[5];

231 }

232 else if (legs == 'B')

233 {

234 pos[1] = spos[1];

235 pos[3] = spos[3];

236 pos[4] = spos[4];

237 pos[0] = spos[0];

238 }

239 else if(legs != 'A')

240 for(i; i < NUM_MOTORS; i+=2)

241 pos[i] = spos[i];

242

243 return(currTime);

244 }

245

246

247 void hillGait(int rpm, char dir, int numSteps)

248 {

249 struct timeval tv = {.tv_sec = 0, .tv_usec = 0};

250 int ipos[6] = {0}, mpos[6] = {0}, spos[6] = {0}, duty[6] =

{0}, done[6] = {0};

251 int stepNum = 0, lpos = 0;

Team 11 - 22

252

253 readAllMotorPos(spos);

254 follower(rpm,dir,'A',1,spos,ipos);

255

256 //Walk numSteps

257 while(stepNum < numSteps)

258 {

259 tv = follower(rpm,dir,'A',0,spos,ipos);

260 ipos[1] = spos[1];

261 ipos[4] = spos[4];

262 readAllMotorPos(mpos);

263 PD(&tv,ipos,mpos,duty);

264 driveAllMotors('H',duty);

265

266 if((((OFFSET1 < (*ipos)) && (lpos < OFFSET1)))) //||

((OFFSET2 < (* ipos)) && (lpos <= OFFSET2)))

267 stepNum++;

268 lpos = *ipos;

269 }

270

271 return;

272 }

273

274 void moove(int rpm, char dir, char legs, int epos)

275 {

276 int ipos[6] = {0}, mpos[6] = {0}, spos[6] = {0}, duty[6] =

{0}, done[6] = {0};

277 struct timeval tv = {.tv_sec = 0, .tv_usec = 0};

278 int numMotors = 0, numDone = 0, i = 0;

279

280 if(legs == 'A')

281 numMotors = 6;

282 else if((legs == 'F') || (legs == 'M') || (legs == 'B'))

283 numMotors = 2;

284 else if((legs == 1) || (legs == 0))

285 numMotors = 3;

286

287 readAllMotorPos(spos);

288 follower(rpm,dir,legs,1,spos,ipos);

289 while(numDone < numMotors)

290 {

291 tv = follower(rpm,dir,legs,0,spos,ipos);

292 readAllMotorPos(mpos);

293

Team 11 - 23

294 //Check to see which motors have finished

295 for(i = 0; i < NUM_MOTORS; i++)

296 {

297 if((mpos[i] > epos - 1500 /* 500*/) && (mpos[i] < epos

+ 1500 /* 500*/))

298 if(done[i] == 0)

299 {

300 done[i] = 1;

301 numDone++;

302 }

303 if(done[i] == 1)

304 ipos[i] = epos;

305

306 // printf("Motor Pos(%d) = %d\n", i, *(mpos+i));

307 }

308 //printf("Init Pos = %d\n", *(ipos+1));

309 //printf("Motor Pos(%d) = %d\n", i, *(mpos+i));

310

311 //Drive Motors that havent finished

312 PD(&tv,ipos,mpos,duty);

313 /* int ol;

314 for (ol = 0; ol < 6; ol++)

315 printf("duty: %d\n", duty[ol]);

316 */

317 driveAllMotors('H',duty);

318 }

319 //Ensure motors are stopped

320 stopMotors();

321 }

322

323

/***

******* ****************

324 HOLD

325

**

******* ***************/

326

327 void hold(int hpos)

328 {

329 int iPos[6] = {hpos,hpos,hpos,hpos,hpos,hpos};

330 struct timeval tv = {.tv_sec = 0, .tv_usec = 0};

331 int mpos[6] = {0};

332 int duty[6] = {0};

Team 11 - 24

333 int i = 0;

334

335 while(i < 100)

336 {

337 readAllMotorPos(mpos);

338 PD(&tv,iPos,mpos,duty);

339 driveAllMotors('H',duty);

340 delay(20); // leave delay 20 not having it does not

improve the hol d function

341 i++;

342 }

343 }

344

345 void turn(int rpm,char dir, int numSteps)

346 {

347 int ipos[6] = {0}, mpos[6] = {0}, spos[6] = {0}, duty[6] =

{0}, done[6] = {0};

348 struct timeval tv = {.tv_sec = 0, .tv_usec = 0};

349 int numMotors = 3, numDone = 0, i = 0, tripod =0;

350

351 int stepNum = 0, lpos = 0;

352

353 if(dir == 'R')

354 {

355 tripod = 1;

356 i = 3;

357 }

358

359 readAllMotorPos(spos);

360 follower(rpm,dir,tripod,1,spos,ipos);

361

362 //Walk numSteps

363 while(stepNum < numSteps)

364 {

365 tv = follower(rpm,dir, tripod,0,spos,ipos);

366 readAllMotorPos(mpos);

367

368 if(dir == 'R')

369 ipos[1] = OFFSET2;//mpos[1];

370 else

371 ipos[4] = OFFSET2;//mpos[4];

372

373 PD(&tv,ipos,mpos,duty);

374 driveAllMotors('H',duty);

Team 11 - 25

375

376 if((OFFSET1 < (ipos[i])) && (lpos < OFFSET1))

377 stepNum++;

378 lpos = ipos[i];

379 }

380

381 return;

382 }

383

384

385 struct timeval turn_buehler(int rpm, char dir, int* pos, int

phase_off, int stepPhaseTime)

386 {

387 static struct timeval startTime = {.tv_sec = -1, .tv_usec

= -1};

388 struct timeval currTime;

389 static int buehlerPeriod;

390 static int T1_1,T1_2,T2_1,T2_2;

391 int P1,P2;

392

393 //Initialize function if its the first call in the loop

394 if(startTime.tv_sec == -1)

395 {

396 //Get start time

397 gettimeofday(&startTime,NULL);

398

399 //Calculate buehler period

400 buehlerPeriod = (int) (((float)(60)/rpm)*1000000);

401

402 //Calculate transition points

403 T1_1 = (int) ((float)(buehlerPeriod)/4) + stepPhaseTime;

404 T2_1 = buehlerPeriod - T1_1;

405

406 T1_2 = (int) ((float)(buehlerPeriod)/4) - stepPhaseTime;

407 T2_2 = buehlerPeriod - T1_2;

408

409 }

410

411 //Get current time

412 gettimeofday(&currTime, NULL);

413

414 //Caculate the current buehler phasor

415 unsigned long long buehlerPhase = (unsigned long long)

((currTime.tv_ sec - startTime.tv_sec)*1000000 +

Team 11 - 26

416 (currTime.tv_usec -

startTime.tv_us ec)) % buehlerPeriod;

417 //printf("buehlerPeriod : %d, beuhlerPhase %d startTime %d

currTime % d\n", buehlerPeriod, buehlerPhase, startTime,

currTimeInt);

418

419 //Get positions of both buehler cycles

420 if(buehlerPhase <= T1_1)

421 { P1 = ((int)

(((float)(1)*NUM_POS*buehlerPhase)/(3*buehlerPeriod))) %

NUM_POS;

422 P2 = ((int)

(((float)(5)*NUM_POS*buehlerPhase)/(3*buehlerPeriod))) %

NUM_POS; }

423 else if (buehlerPhase < T2_1)

424 { P1 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T1_1))/(3*buehlerPe riod)) + ((float)(1)*NUM_POS)/12)) %

NUM_POS;

425 P2 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T1_1))/(3*buehlerPe riod)) + ((float)(5)*NUM_POS)/12)) %

NUM_POS; }

426 else

427 { P1 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T2_1))/(3*buehlerPe riod)) + ((float)(11)*NUM_POS)/12)) %

NUM_POS;

428 P2 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T2_1))/(3*buehlerPe riod)) + ((float)(07)*NUM_POS)/12)) %

NUM_POS; }

429

430 //printf("buehlerPeriod: %d, buehlerPhase: %llu, T1: %d,

T2: %d, iPos [0]: %d, iPos[1]: %d\n",buehlerPeriod,

buehlerPhase, T1, T2, pos[0], po s[1]);

431

432 //Adjust position with offset and direction

433 if(dir == 'B')

434 { pos[0] = pos[2] = pos[4] = NUM_POS - (P1 + (NUM_POS -

OFFSET1)) % N UM_POS;

435 pos[1] = pos[3] = pos[5] = NUM_POS - (P2 + (NUM_POS -

OFFSET2)) % N UM_POS; }

436 else

437 { pos[0] = pos[2] = pos[4] = (P1 + OFFSET1) % NUM_POS;

438 pos[1] = pos[3] = pos[5] = (P2 + OFFSET2) % NUM_POS; }

439

440 return(currTime);

Team 11 - 27

441 }

442

443 void walk_turn(int rpm, char dir, int numSteps, int angles,

int oddstep s/* int phase_off, int stepPhaseTime, char

turn_dir*/)

444 {

445 struct timeval tv = {.tv_sec = 0, .tv_usec = 0};

446 int ipos[6] = {0}, mpos[6] = {0}, duty[6] = {0},

done[6]={0};

447 int stepNum = 0, lpos = 0;

448

449 //if (dir != 'L' && dir != 'R')

450 //{

451 // printf("INCORRECT DIRECTION L OR R");

452 // return;

453 //}

454

455 if (numSteps == 0)

456 dir = 'U';

457

458 //if (dir == 'R')

459 if (dir == 'U')

460 tv = walks_turn_buehler(rpm,dir,ipos,angles,oddsteps);

461 else

462 numSteps = numSteps + 1;

463 //else

464 //numSteps = numSteps;

465

466 while(stepNum < numSteps)

467 {

468 tv = walks_turn_buehler(rpm,dir,ipos,angles,oddsteps);

469 readAllMotorPos(mpos);

470 PD(&tv,ipos,mpos,duty);

471 driveAllMotors('H',duty);

472

473 //printf("Desired = %d, Acutual = %d\n",ipos[4],

mpos[4]);

474 if(dir=='L')

475 {

476 if((((OFFSET1 < (*(ipos+3))) && (lpos <= OFFSET1))) ||

((OFFSET2 < (*(ipos+3))) && (lpos <= OFFSET2)))

477 stepNum++;

478 lpos = *(ipos+3);

479 }

Team 11 - 28

480 else

481 {

482 if((((OFFSET1 /*>*/< (*(ipos/* + 3*/))) && (lpos

/*>*/<= OFFSET1))) || ((OFFSET2 /*>*/< (*(ipos/* + 3*/))) &&

(lpos /*>*/<= OFFSET2)))

483 stepNum++/* = stepNum + 2*/;

484 lpos = *(ipos/* + 3*/);

485 }

486

487 /**************

488 else

489 {

490 if((((OFFSET1 < (*ipos)) && (lpos <= OFFSET1))) ||

((OFFSET2 < (* ipos)) && (lpos <= OFFSET2)))

491 stepNum++;

492 lpos = *ipos;

493 }

494 *************/

495 }

496 //printf("Desired = %d, Acutual = %d\n",ipos[0], mpos[0]);

497 //Ensure motors are stopped

498 stopMotors();

499 return;

500 }

501

502 struct timeval walks_turn_buehler(int rpm, char dir, int*

pos, int angl es, int oddstepss)

503 {

504 // printf("EnteringBuehler");

505 static struct timeval startTime = {.tv_sec = -1, .tv_usec

= -1};

506 struct timeval currTime;

507 static int buehlerPeriod;

508 static int T1, T2;

509 int P1, P2;

510

511 if (angles < 0)

512 angles = 0;

513 else if (angles > 10)

514 angles = 10;

515 else

516 {}

517

518 if(startTime.tv_sec == -1)

Team 11 - 29

519 {

520 gettimeofday(&startTime,NULL);

521 buehlerPeriod = (int) (((float)(60)/rpm)*1000000);

522 T1 = (int) ((float)(buehlerPeriod)/4);

523 T2 = buehlerPeriod - T1;

524 }

525

526 gettimeofday(&currTime, NULL);

527

528 if (dir == 'U')

529 {

530 startTime = currTime;

531 startTime.tv_sec = currTime.tv_sec;

532 startTime.tv_usec = currTime.tv_usec;

533 }

534

535 unsigned long long buehlerPhase = (unsigned long long)

((currTime.tv_ sec - startTime.tv_sec)*1000000 +

536 (currTime.tv_usec -

startTime.tv_us ec)) % buehlerPeriod;

537

538 if (oddstepss == 1 && dir != 'U')

539 {

540 buehlerPhase = (buehlerPhase + (buehlerPeriod/2)) %

buehlerPeriod;

541 }

542

543 //printf("buehlerPeriod : %d, beuhlerPhase %d startTime %d

currTime % d\n", buehlerPeriod, buehlerPhase, startTime,

currTime/*Int*/);

544

545 if (buehlerPhase <= T1)

546 { P1 = ((int)

(((float)(1)*NUM_POS*buehlerPhase)/(3*buehlerPeriod))) %

NUM_POS;

547 P2 = ((int)

(((float)(5)*NUM_POS*buehlerPhase)/(3*buehlerPeriod))) %

NUM_POS;}

548 else if (buehlerPhase < T2)

549 { P1 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T1))/(3*buehlerPeri od)) + ((float)(1)*NUM_POS)/12)) %

NUM_POS;

Team 11 - 30

550 P2 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T1))/(3*buehlerPeri od)) + ((float)(5)*NUM_POS)/12)) %

NUM_POS;}

551 else

552 { P1 = ((int) ((((float)(1)*NUM_POS*(buehlerPhase-

T2))/(3*buehlerPeri od)) + ((float)(11)*NUM_POS)/12)) %

NUM_POS;

553 P2 = ((int) ((((float)(5)*NUM_POS*(buehlerPhase-

T2))/(3*buehlerPeri od)) + ((float)(07)*NUM_POS)/12)) %

NUM_POS;}

554

555

556 // printf("buehlerPeriod: %d, buehlerPhase: %llu, T1: %d,

T2: %d, iPo s[0]: %d, iPos[1]: %d\n",buehlerPeriod,

buehlerPhase, T1, T2, pos[0], p os[1]);

557

558

559 if (dir == 'L')

560 {

561 pos[0] = pos[2] = (P1 + OFFSET1) % NUM_POS;

562 pos[4] = ((P1 + OFFSET1) + (500*angles)) % NUM_POS;

563 pos[3] = pos[5] = (P2 + OFFSET2) % NUM_POS;

564 pos[1] = ((P2 + OFFSET2) - (500*angles)) % NUM_POS;

565 }

566 else if (dir == 'R')

567 {

568 pos[0] = pos[2] = (P1 + OFFSET1) % NUM_POS;

569 pos[4] = ((P1 + OFFSET1) - (500*angles)) % NUM_POS;

570 pos[3] = pos[5] = (P2 + OFFSET2) % NUM_POS;

571 pos[1] = ((P2 + OFFSET2) + (500*angles)) % NUM_POS;

572 }

573 else

574 {};

575 // printf("exitingBuehler");

576 return (currTime);

577 }

578

579

580

581 void stair(int rpm, int numSteps/* int phase_off, int

stepPhaseTime, ch ar turn_dir*/)

582 {

583 struct timeval tv = {.tv_sec = 0, .tv_usec = 0};

Team 11 - 31

584 int ipos[6] = {0}, mpos[6] = {0}, duty[6] = {0},

done[6]={0};

585 int stepNum = 0, lpos = 0;

586 int off_R, off_M, off_F;

587

588 off_R = ((int) ((float)(1)*NUM_POS)/6)%NUM_POS;

589 off_M = ((int) ((float)(1)*NUM_POS)/5)%NUM_POS;

590 off_F = ((int) ((float)(3)*NUM_POS)/4)%NUM_POS;

591

592 printf("%d\n, %d\n, %d\n", off_R, off_M, ((OFFSET1 +

off_F)%NUM_POS)) ;

593

594 moove(10,'F','B',(off_R+OFFSET1)%NUM_POS);

595 moove(10,'F','M',(off_M+OFFSET1)%NUM_POS);

596 moove(10,'F','F',(off_F+OFFSET1)%NUM_POS);

597

598 while(stepNum < numSteps)

599 {

600 tv = stair_buehler(rpm,ipos);

601 readAllMotorPos(mpos);

602 PD(&tv,ipos,mpos,duty);

603 driveAllMotors('H',duty);

604 //printf("Desired = %d, Acutual = %d\n",ipos[4],

mpos[4]);

605 {

606 if(((((((off_F+OFFSET1)%NUM_POS)-1000) < (*ipos)) &&

(lpos <= (((off_F+OFFSET1)%NUM_POS)-1000)))))// || ((OFFSET2

> (*ipos)) && (lpos >= OFFSET2)))

607 {

608 stepNum++;

609 printf("Forward Motor: %d\n",(*ipos));

610 printf("Forward Motor(L): %d\n",(lpos));

611 printf("%d\n", stepNum);

612 }

613 lpos = *ipos;

614 }

615 }

616

617 //printf("Desired = %d, Acutual = %d\n",ipos[0], mpos[0]);

618 //Ensure motors are stopped

619 stopMotors();

620 return;

621 }

622

Team 11 - 32

623 struct timeval stair_buehler(int rpm, int* pos)

624 {

625 // printf("EnteringBuehler");

626 static struct timeval startTime = {.tv_sec = -1, .tv_usec

= -1};

627 struct timeval currTime;

628 static int buehlerPeriod;

629 static int T1, T2;

630 int P1, P2, P3;

631

632 if(startTime.tv_sec == -1)

633 {

634 gettimeofday(&startTime,NULL);

635 buehlerPeriod = (int) (((float)(60)/rpm)*1000000);

636 T1 = (int) ((float)(buehlerPeriod)/4);

637 T2 = buehlerPeriod - T1;

638 }

639

640 gettimeofday(&currTime, NULL);

641

642 unsigned long long buehlerPhase = (unsigned long long)

((currTime.tv_ sec - startTime.tv_sec)*1000000 +

643 (currTime.tv_usec -

startTime.tv_us ec)) % buehlerPeriod;

644

645 //printf("buehlerPeriod : %d, beuhlerPhase %d startTime %d

currTime % d\n", buehlerPeriod, buehlerPhase, startTime,

currTime/*Int*/);

646

647 if (buehlerPhase <= T1)

648 { P1 = ((int)

((((float)(7)*NUM_POS*(buehlerPhase))/(3*buehlerPeriod)) +

((float) (1)*NUM_POS)/6)) % NUM_POS;

649 P2 = ((int) ((float)(1)*NUM_POS)/6)%NUM_POS;

650 P3 = ((int) ((float)(3)*NUM_POS)/4)%NUM_POS;

651 //P3 = ((int)

((((float)(11)*(NUM_POS*buehlerPhase)/3*buehlerPeriod)) +

((float) (1)*NUM_POS)/24))%NUM_POS;

652 }

653 else if (buehlerPhase < T2)

654 { P1 = ((int) ((((float) (1)*(NUM_POS*(buehlerPhase-

T1))/(2*buehlerPe riod)) + ((float)(3)*NUM_POS)/4))) %

NUM_POS;

Team 11 - 33

655 P2 = ((int) ((((float) (7)*(NUM_POS*(buehlerPhase-

T1))/(6*buehlerPe riod)) + ((float)(1)*NUM_POS)/6))) %

NUM_POS;

656 P3 = ((int) ((((float) (5)*(NUM_POS*(buehlerPhase-

T1))/(6*buehlerPe riod)) + ((float)(3)*NUM_POS)/4)))%NUM_POS;

657 }

658 else

659 {

660 P1 = ((int) (((float) (2)*(NUM_POS*(buehlerPhase-

T2))/(3*buehlerPe riod))))%NUM_POS;

661 P2 = ((int) ((((float) (5)*(NUM_POS*(buehlerPhase-

T2))/(3*buehlerPe riod)) + ((float)(3)*NUM_POS)/4)))%NUM_POS;

662 P3 = ((int) ((((float) (7)*(NUM_POS*(buehlerPhase-

T2))/(3*buehlerPe riod)) + ((float)

(1)*NUM_POS)/6)))%NUM_POS;

663 }

664

665 // printf("buehlerPeriod: %d, buehlerPhase: %llu, T1: %d,

T2: %d, iPo s[0]: %d, iPos[1]: %d\n",buehlerPeriod,

buehlerPhase, T1, T2, pos[0], p os[1]);

666

667 {

668 pos[0] = pos[3] = (P3 + OFFSET1) % NUM_POS;

669 pos[1] = pos[4] = (P2 + OFFSET1) % NUM_POS;

670 pos[2] = pos[5] = (P1 + OFFSET1) % NUM_POS;

671 }

672 // printf("exitingBuehler");

673 return (currTime);

674 }

675

676

677

678

679 #endif

