

[bookmark: _GoBack]
FAMU-FSU College of Engineering
Department of Electrical and Computer Engineering

EEL4914/4915C - ECE-ME Senior Design Project II

FINAL REPORT

Project title: Cosmic Cube

Team #: 4
Project Manager: Kenneth Spradley II

Student team members:
Matt Gibson, Electrical Engineering (mrg02d@)my.fsu.edu)
Cole Gray, Mechanical Engineering (cdg10c@my.fsu.edu)
Crystal Hill, Mechanical Engineering (cxh09@)my.fsu.edu)
Don Lundi, Electrical Engineering (drl07c@my.fsu.edu)
Kenneth Spradley II, Electrical Engineering (kenneth1.spradley@famu.edu)

Senior Design Project Instructor:
Dr. M. Frank - ECE Department
Technical Advisors:
Dr. O'Neal - FAMU Physics Department
Dr. Hollis - FSU ME Department
Reviewers
Dr. Perry - Associate Dean & ECE Department
Dr. Weatherspoon - ECE Department

Submitted in partial fulfillment of the requirements for
EEL4914C/4915C - ECE Senior Design Project I
April 24, 2013

[bookmark: _Toc354781377]Executive Summary
Description
Interstellar bodies generate cosmic radiation. For example, one of the many possible ways cosmic rays can occur is when a star undergoes a supernova event. The particles produced travel throughout the universe, largely unimpeded. The extraordinary power of such cosmic events causes the resultant particles to be highly energetic. When one of these particles hits Earth's atmosphere, a shower of particles is produced that continues to the surface. Some common particles that make it through our atmosphere are: muons, protons, electrons, and neutrons. Understanding when and where these particles come from allows for a better comprehension of the forces that shape our universe.
The cosmic particles that are of interest are very fast moving and are invisible to the human eye; therefore complex methods of detection are required to discover them. The purpose of the Cosmic Cube is to detect these particles during a shower caused by a cosmic event. The Cosmic Cube will transduce the invisible particles into electrical signals that can be processed, measured, recorded, and compared. There are many other large (in budget and size) cosmic ray detectors; the main purpose of this project is to make the Cosmic Cube readily available to the backyard astronomer or other users at a low price. The product is small in size to appeal to users that would wish to keep this as a “desktop” item, but it has been designed so that in the future multiple cubes can be combined to make a multi unit structure to increase the scintillator area (to capture more events) as well as to be able to use triangulation to find the origin of the rays. This multi unit structure will be appealing to organizations with large budgets that are interested in detecting cosmic events such as universities or other research organizations.
The cube has been designed in an 8in x 8in x 8in housing with the top compartment consisting of the scintillator material and the bottom compartment consisting of the electronic equipment. The electronics that are implemented in this project are an Arduino Mega microcontroller, a De0 Nano time processing unit, a Fastrax GPS, an Arduino Wi-Fi shield, and a Hamamatsu photo detector that is connected to Elgen EJ204 scintillator material.
The cube can successfully detect cosmic events via the scintillator material and photo detector. These events are small in width and amplitude so a pulse stretching and amplifying circuit have been designed. The other electronics are also functioning separately but have not been integrated with the sensing portion of the cube. The GPS and De0 nano time stamp incoming events (after being connected to multiple satellites) and via the Arduino Mega the information can be transmitted to the user’s computer via the Wi-Fi.

[bookmark: _Toc354781378]List of Revisions
	Date
	Revision
	Comments

	04/01/2013
	1
	Preliminary Additions from Milestone 4

	04/05/2013
	2
	Added Test Plan

	04/07/2013
	3
	Added Formatting/Editing

Table of Contents
Executive Summary	2
List of Revisions	3
1.	Introduction	5
1.1	Acknowledgements	5
1.2	Problem Statements	5
1.3	Operating Environment	6
1.4	Intended Use(s) and Intended User(s)	6
1.5	Assumptions and Limitations	7
1.6	Expected End Product and Other Deliverables	7
2.	System Design	8
2.1	Overview of the System	8
2.2	Major Components of the System	11
2.3	Performance Assessment	12
2.4	Design Process	12
2.4.1	Scintillator	12
2.4.2	Photo-Detector	13
2.4.3	Microcontroller/CPU	13
2.4.4	Global Positioning Systems (GPS)	13
2.4.5	Wi-Fi	13
2.4.6	Structure	14
2.4.7	Radioactive Isotope	14
2.4.8	Power Supply	14
2.4.9	Time Processing Unit	14
2.4.10	Amplifier/Pulse Stretcher	15
2.5Overall Risk Assessment	15
3.	Design of Major Components/Subsystems	18
3.1	Scintillator	18
3.2	Photo-Detector	21
3.3	Microcontroller/CPU	22
3.4	Global Positioning System (GPS)	22
3.5	Wi-Fi	23
3.6	Structure	25
3.7	Radioactive Isotope	28
3.8	Power Supply	29
3.9	Time Processing Unit (TPU)	31
3.10	Amplifier	34
3.11	Pulse Stretcher	35
4.	Test Plan	36
4.1	Test Plan for Major Components	36
4.1.1	Scintillator	36
4.1.2	Photo-Detector	37
4.1.3	Global Positioning System (GPS)	39
4.1.4	Wi-Fi	40
4.1.5	Structure	41
4.1.6	Time Processing Unit (TPU)	43
4.1.7 Amplifier/Pulse Stretching Unit	47
4.2 Summary of Test Plan Status	49
5.	Schedule	50
6.	Initial/Final Budget and Justification	50
7.	Conclusion	51
8.	References	54
Appendix A – User Guide	55
Appendix B - Software	57
a.	CPU Code	57
b.	Coding for GPS and WIFI Modules	62
c.	Time Processing Unit (TPU) Code	69
Appendix C – Data Sheets	87
DE0 Nano	88
Appendix D – Arduino Mega 2560 R3	95

1. [bookmark: _Toc354781379]Introduction
1.1 [bookmark: _Toc354781380]Acknowledgements

The Cosmic Cube team would like to acknowledge Dr. Ray O'Neal and Dr. Michael Frank. Both professors have been an integral part of the designing process and framework of the overall development of the cosmic cube. Dr. O'Neal, with a background in physics and particle astronomy, helped shape the design and functionality of the cube. Dr. Frank, with a background in computer and electrical engineering, provided insight on how to approach the network of circuitry needed for the project.
1.2 [bookmark: _Toc354781381]Problem Statements

There is a need to detect high-energy cosmic rays because although research has been done regarding the subject, the exact origins of these extremely high-energy particles are not known in all cases. In fact, it was not until 1905, with research done by Victor Hess, that it was learned that the ray’s origins were beyond Earth’s atmosphere [12].
Detecting these cosmic ray showers on earth and recording the presence, timing, energy levels, and trajectory can help to link the rays to possible events in space that could have produced these showers on earth. There are cosmic ray detectors already in operation yet they are extremely bulky and expensive. This model is designed so that the price per unit will be low, targeting a larger market of buyers, creating a means for the backyard astronomer to have access to this technology. The detector will be compact and visually stimulating to appeal to buyers yet still operational to maintain detector functionality.
1.3 [bookmark: _Toc354781382]Operating Environment

The device can be operated both safely and efficiently in an indoor or outdoor environment. Though the majority of the subsystems involved with the cube will be fully operational indoors, the GPS unit however will not be able to function unless the user can allow the GPS antenna an unobstructed view of the sky. Although not ideal or recommended, this can be accomplished by placing the antenna near a window. The product should be handled with care, since it is somewhat fragile. It is safe to have as a centerpiece in homes or to be taken outside for exposure to more particles. When placing the cube outside, it should only be exposed to mild weather conditions.

1.4 [bookmark: _Toc354781383]Intended Use(s) and Intended User(s)

Intended users include researchers, backyard astronomers,/general public, and special applications groups.
Researchers: Those who want to use the cosmic cube to gather data for studies and projects relating to high-energy cosmic rays. These can be individuals in universities, local high schools, and scientists out in the field.
Backyard Astronomers/General Public: Individuals who don’t have funding for work for a major company. These are people who have interest in space maybe as a hobby or career and want to use the cosmic cube to detect high-energy cosmic ray events in their area.
Special Applications Groups: With the added feature of being able to detect gamma rays the portable cosmic cube segment can be used in aiding with the search for nuclear devices and differentiating between materials and locations that have been contaminated by harmful radioactive material.
The Cosmic cube is meant to be an open source project where individuals using the device can develop their own means of translating the data provided by the cube such as event time, particle species, and event trajectory into something more meaningful to them. The user interface will be very simple and rudimentary. Most likely it will consist of a window depicting the raw data and a means to save the data to the local hard drive or external device. A future goal for the project is to allow peer-to-peer style sharing, as opposed to central server based, to share recorded event data. In addition there will be multicolored Light Emitting Diodes (LEDs) found on the inside of the cube to indicate various energy levels of particles that pass through the cosmic cube.
1.5 [bookmark: _Toc354781384]Assumptions and Limitations

Assumptions
· Of the particles that strike the scintillator, the ones that are of interest in particle astronomy will have energies in the range of 1-4GeV.
· Particles of greater energy may occasionally be encountered.
· The scintillator will absorb a fraction of the energy deposited by the cosmic rays.
· The cube will be subjected to terrestrial radiation as well as cosmic rays.
· A Cosmic particle will strike the scintillator material at least 1 per microsecond possibly more frequent.

Limitations
· The length of a cube segment can be no greater than 30cm on any given side.
· The time resolution of the device will be no slower than 100 nanoseconds.
· A commercially available Cosmic Cube when mass produced should cost approximately $1000.

Funding
Currently, the Cosmic Cube has been given $750.00 from FSU College of Engineering's ECE department. Additionally, Dr. O'Neal will be providing samples of scintillator, lead- free substitute, and photo-detectors. Dr. Frank has also indicated that there may be additional funding if absolutely necessary. The team is currently seeking donations for the other components to put towards the Cosmic Cube prototype.
These lists will be subject to change as the project is further developed.
1.6 [bookmark: _Toc354781385]Expected End Product and Other Deliverables

The Cosmic Cube will be commercialized but one complete prototype cube, with the following components will be completed by the end of April 2013. This list is subject to change while the project is ongoing.

· 1 working cube segment complete with
· Enclosure
· Scintillator
· Solid-state Photodiode
· GPS Module
· DAC board
· Wi-Fi Module
· Power Supply
· User Manual
· Design schematics
· All code files developed for microcontrollers and FPGAs	
· Bill of materials required for manufacturing additional units
2. [bookmark: _Toc354781386]System Design
2.1 [bookmark: _Toc354781387]Overview of the System
The following block diagram, shown in Figure 1, gives an overview of the flow of information and power for the Cosmic Cube.

[image: COSMIC CUBE FLOW.pdf]

Figure 1 - Overall Block Diagram of System Flow

[image: CC PSU FLOW.pdf]
	Figure 2 - Block Diagram of Cosmic Cube Power System Flow
A technical drawing of the cube design can be viewed in Figure 2 as well as a model of the structure that will house the individual cubes in Figure 3.

[image:]
Figure 2 – Single Unit Cube Design
[image:]
Figure 3 - Multi-Unit Cube Design

2.2 [bookmark: _Toc354781388]Major Components of the System

The following includes brief descriptions of all the major components; scintillator, photo-detector, microcontroller/CPU, global positioning system (GPS), Wi-Fi, the structure, light emitting diodes (LED), and the radioactive isotope (used for calibration).
The purpose of the scintillator is to convert high-energy particles into photons. When the cosmic radiation strikes the dense material on the top of the scintillator material, a mini shower is created. The mini shower travels through the scintillator, depositing energy along the way. The energy from the particle shower causes the scintillator atoms to bump up to a higher energy level. When the scintillator atoms fall back to their previous state, a photon is released. The amount of photons per amount of energy deposited for the scintillator material can be calibrated using a radioactive isotope of known energy.
The purpose of the photo-detector is to turn the photons from the scintillator into an electrical signal that can be measured and processed by the CPU. The type of photo-detector to be selected will be an MPPC (Multi-pixel photon counter). This is a solid-state type of detector that is capable of counting actual photons. A standalone photo-detector has an analog output. To be useful for detecting the number of photons, a digital output would have to be created from the analog signal. An MPPC module would be much more suited to this project due to its digital output.
The microcontroller/CPU will serve as the main hub of the cosmic cube. It will interface directly with the photo-detector, Global Position System (GPS), Wi-Fi, and Personal Computer and possibly a multi-color LED. The microcontroller will receive a pulse or change in voltage values from the photo-detector to signify the detection of photons generated from the cosmic particle striking the scintillation material.
The GPS module will be used to provide timing and positional data for the cosmic events recorded by the cosmic cube. Out of the box the GPS chosen has a timing accuracy of +/-50ns. A high accuracy is needed because the overall function of the GPS is to sync the timing information of incoming signals from multiple cubes located around the world.
The Wi-Fi communication is used to communicate accumulated data to the user's computer. Since we would like this to be able to operate outside of the building (for high speed electron detection), Wi-Fi communications were chosen as the means to link the user's computer to the data. This will allow the user to be some distance away from the cosmic cube while it operates, as well as potentially allow more than one user to see the data obtained from the cosmic cube.
All of the electronic components of the Cosmic Cube need a housing structure. The single-unit cube size is currently 8” on a side which allows for some extra room if someone wants to increase the size of the scintillator or add more/larger electronics. The cube has two compartments; one which holds all of the electronics and other that holds the scintillator. The sensor will slide into a small slot machined in the middle plate connecting the two compartments. This will allow the scintillator to fit flush with the bottom of the top compartment, and the sensor will be open to the rest of the electronics. Since this model is meant to be slightly customizable for a specific customer’s needs, the electronics will be Velcroed to the bottom compartment so they can be situated in any configuration the user wants. The multi-unit sub cube will only contain the scintillator and sensor. The sensor data will then be sent to a set of more powerful electronics that is collecting all of the data for the sub-cube array. The multi-unit sub cubes will be in a structure that can hold up to 3 sub-cubes and can be bolted to the side or on top of another section of the structure.
To connect the cubes together, the system will have a cubby holes type design, where each cube has a slot it can slide into, and the systems can be expanded upon to add more cubes just by buying more sections and bolting them on.
The sensor (scintillator plus photo-detector) will require calibration. Radioactive isotopes can be used since they emit similar radiation. A gamma source with known photon energy, such as Co-60 or Strontium 90 can be acquired for a reasonable cost and without the need for a special license. Since the scintillator material is given with known photons per unit energy specification and isotope sources are reasonably calibrated, the resulting photons produced from a cosmic event can be compared to our calibration for use in determining what was detected.
Timing Processing Unit (or TPU) is a chip that will serve mainly as counter/timer to track the time of when the particle strikes the scintillator, to a resolution of 100 nanoseconds. This is mainly because the current GPS that will be interfaced does not provide a high-frequency timing reference signal. In addition the TPU will also be responsible for temporarily storing the timing data until called by the main microcontroller.
2.3 [bookmark: _Toc354781389]Performance Assessment

All of the electronics for the cosmic cube have been purchased and received. The testing for the individual components has begun as well as programming. The material for the housing for the cube has been purchased to be delivered to the machine shop to be drilled.
2.4 [bookmark: _Toc354781390]Design Process
2.4.1 [bookmark: _Toc354781391]Scintillator

The function of the scintillator is to convert the cosmic radiation into light. As cosmic radiation enters the scintillator material, in the form of a subatomic shower of particles, scintillator atoms are bumped up to a higher energy level. When the scintillator atoms fall back to a lower energy level, they release a photon. These photons are proportional to the amount of energy absorbed by the scintillator from the cosmic-ray shower. An Eco-Mass compound will be used to create a mini shower when a cosmic ray hits the scintillator.

The type of scintillator chosen is EJ204, made by Elgen. It emits light in the 408nm range with a specified yield of 10,400 photons per 1MeV absorbed. The size of the scintillator is about 10 cm on each side. Shielding the scintillator from light will entail painting the scintillator with a material such as Teflon or Tyvek paint and then wrapped in Tyvek material.
2.4.2 [bookmark: _Toc354781392]Photo-Detector

The purpose of the photo-detector is to convert the photons produced in the scintillator by the cosmic ray shower into an electrical signal that can be measured. A MPPC (Multi Pixel Photon Counter) was chosen due to its specialty in counting individual photons. When a photon strikes a pixel in the MPPC, a pulse is produced. As multiple pixels are struck by multiple photons, the output pulses add together. As the scintillator absorbs more energy, the output pulse grows.
2.4.3 [bookmark: _Toc354781393]Microcontroller/CPU

This microcontroller will be responsible for the interpretation of incoming signals, processing the data, formatting it and transporting the data to any computer. The Arduino will interact with the other components of the system to complete the following tasks. Be able to receive a signal that has been amplified & stretched from Photo-Detector through Analog to Digital Converter (ADC) pin. The CPU should also have the ability to Collect Cosmic Particles timing data from the Time Processing Unit (TPU) via custom Consumer/Producer communication protocol that will be specified in this document. In addition it will have the ability to Transfers all data via Arduino Wi-Fi-Shield to be wirelessly transmitted to the user's computer this includes both the time at which Cosmic Particle event occurred and magnitude of energy for particle.

2.4.4 [bookmark: _Toc354781394]Global Positioning Systems (GPS)

The GPS chosen is the Fastrax UP501 GPS receiver. The purpose of the GPS receiver is to send incremental timing pulses to the TPU at a rate of 1 pulse per second (PPS). The TPU will then divide up the time between each pulse to provide a time stamp, within nanoseconds, for the all significant events observed by the detector. The accuracy of each pulse is within +/- 50ns of the actual GPS time. For the applications of the Cosmic Cube this timing resolution is acceptable.
The UP501 receiver will be affixed to a GPS shield, which is compatible with the Arduino Mega 2560 allowing for easy integration with minimal hardwiring. The GPS receiver uses standard NMEA protocols to transmit information through a serial connection.

2.4.5 [bookmark: _Toc354781395]Wi-Fi

The Wi-Fi unit in this project is going to serve primarily as an interface to transport data from the Cosmic Cube's microcontroller to the user's computer wirelessly. Unlike the GPS receiver the Wi-Fi shield requires no additional circuitry once it is placed upon the Arduino Mega 2560. The shield uses 802.11 wireless specifications to allow the Arduino to connect to the Internet through b/g networks. It can access open connects as well as those using WEP and WPA2 Personal encryption types. However, it will not be able to access connections encrypted using WPA2 Enterprise. This is not an issue as the Cosmic Cube is intended as a commercial product to reach a wide range of users and it is assumed that most of the intended audience will be using WPA2 Personal or no encryption at all.

2.4.6 [bookmark: _Toc354781396]Structure

The structure is the housing that encloses all of the parts of the Cosmic Cube. It is required to keep the components safe and protected from the environment. The electronics being used need to be enclosed as much as possible within the sub-cube. The sub-cubes must be able to be attached to other cubes or placed in an expandable structure. Currently, we have the polycarbonate material and are making final adjustments to some of the Pro Engineering structure before those adjusted parts are given to the machine shop.

2.4.7 [bookmark: _Toc354781397]Radioactive Isotope

The radioactive isotope will assist in testing and calibration of the Cosmic Cube's sensor (scintillator and photo-detector).

2.4.8 [bookmark: _Toc354781398]Power Supply

The PSU (power supply unit) consists of a standard multiple output low voltage power supply and a high voltage variable power supply. The low voltage supply will provide 12DC volts for the Arduino UNO board, 5DC volts for the GPS shield, and 3.3DC volts for the WIFI shield. It will work off of 120VAC.
The high voltage power supply chosen is the A01, made by EMCO. This power supply can supply up to 100VDC at 10mA depending on the input voltage of 0-5VDC. This power supply is solely meant for the photo-detector. A voltage divider along with the 5v low voltage power supply will set the input voltage and thus the output voltage.

2.4.9 [bookmark: _Toc354781399]Time Processing Unit

The TPU will be responsible for tracking the time at which cosmic particles strike the scintillator with precision timing. The TPU interacts with the GPS and CPU of the system and will be able to complete multiple tasks. Such tasks include being able to receive an analog signal from the microcontroller and the GPS Shield. The TPU will also serve as a timer/counter to count keep an approximately 20-nanosecond accuracy, store the time at which it receives an analog signal from the microcontroller to 100-nanosecond accuracy, and output the timing data back to the microcontroller. The final task for the TPU will be to also serve as an external interrupt for the CPU to start the Analog-to-Digital feature within the CPU to find the magnitude of the cosmic event occurring.
2.4.10 [bookmark: _Toc354781400]Amplifier/Pulse Stretcher

The amplifier is the part of the project responsible for amplifying the signal from the sensor. Amplification is important since the initial signal from the sensor is very small. The actual amplitude of a pulse produced by the photo-detector will determine the gain of the amplifier.

[bookmark: _Toc354781401]2.5Overall Risk Assessment

The risks that actually came true for our original predictions dealt with the actual structure of the cube. When designing the cube many small bolts were originally going to be employed to hold the sides together, which would allow for access to the inside of the cube from all sides. This proved to be a very time consuming process (drilling small bolt holes without the poly carbonate cracking). This was overcome by gluing the top of the structure to the sides as well as the bottom to the bottom sides. The middle piece of the cube as well as the top and bottom compartments are held together with bolts which allows access to the entire cube but the individual side panels can not be individually replaced.
Other risks were encountered but were not originally accounted for. The entire system could not be integrated together. This was worked out by ensuring that the individual components worked separately so that future improvements can be made to integrate the cube into one standalone system.
The scintillator material was originally intended to be one whole cube but since it was donated the material arrived in two pieces. This provided the problem of interfacing the two pieces seamlessly to provide an ideal capture of photons. The material was originally sealed with Teflon based paint and the two halves were placed together but this provided a problem with the detection of the rays so only half the material is being used and has been sealed completely.
Another risk for the sensor of the project was connecting the MPPC permanently to the scintillator material. Since there was no permanent bond to the material this produced the problem that photons could be escaping.
The limitations of the final design are as follows. The cosmic cube segments are designed to be operated either indoor or outdoor between temperature ranges of 27-100 degrees Fahrenheit ((-3)-38 degrees Celsius). The segments are resistant to water (excluding small ventilation holes). This being stated, the cube is not waterproof. Therefore the cube should never be left outdoors if it is raining or fully submerged in water. The scintillator material encased within the device is very delicate. The segments should remain fairly stable and the user will need to avoid situations where the cube will be excessively shaken as this may lead to the scintillator fracturing or even breaking.

2.5.1 Technical Risks

	Title of Risk
	Description
	Probability
	Consequence
	Strategy

	Scintillator
Polishing Inadequate
	Sanding and polishing job is inadequate resulting in photon scattering that prevents the photo-detector from capturing the photons
	Low
	“Severe”
Resulting in photon scattering that prevents the photo-detector form capturing the photons
	Re-sand and
polish until complete

	Dropping the
scintillator
	Dropping the scintillator will cause it to
crack
	Medium
	“Devastating”
Unreliable scintillator for detecting of light energy deposited by particles in scintillator
	To prevent this
from happening the scintillator is being stored with bubble wrap

	Inadequate
reflective paint
	 Light particles are being absorbed by the scintillator and the majority of light is not being deposited into the sensor.
	Medium
	“Severe”
Outside light accidently detected by photo-diode giving false results
	To ensure this risk
is minimal, the paint chosen will be of a type commonly used by others: Tyvek or Teflon white paint

	Contaminated
photo-detector
	Dust particles and skin cells could cover
or contaminate the sensor
	Medium
	“Moderate”
Low amounts of dust will only lower efficiency rather than completely preventing functions
	To prevent
contamination, the photo-detector will only be removed from its packaging when ready to connect to scintillator

	Wrong voltage
for phto- detector
	The voltage is too low or too high
	Low
	“Severe”
If the voltage is too low the photo-diode will not function. If the voltage is too high, the photo- detector will be damaged
	To prevent under
and over voltage, a precision power supply will be used

	Incorrect
Isotope calibration
	Isotope is not positioned correctly to
allow for maximum exposure of the scintillator
	Low
	“Moderate”
Incorrect Calibration
	To ensure the
scintillator gets maximum exposure of the isotope, the source itself will be placed directly on the light shielded scintillator

	Isotope
Radiation Exposure
	People exposed while testing and
calibrating cosmic cube
	Low
	Unknown Consequences possible skin or body reactions to radiation
	To prevent harm
to the operator, a low activity source was chosen and won’t be accessible to the user once the Cosmic Cube is fully assembled

	Low voltage
power supply underpowered
	-
	Low
	“Severe”
Many of the components won’t run correctly
	To minimize this
risk, a power supply was chosen with more than sufficient power capacity

	Low voltage
power supply voltage is too high
	-
	Low
	“Moderate”
Power supply voltage is too high, it may damage the components
	The power supply
was chosen such that the output voltages are matched to the components. A voltage meter will also be used to verify voltages before connecting components.

	High voltage
power supply voltage is too high or too low
	-
	Moderate
	“Moderate”
Could break photo- detector
	Before connecting
the photo- detector, the high voltage power supply voltage will be checked with a voltage meter

	Microcontroller Memory Size
	Memory size is too small
	Moderate
	Could take much time to reduce code in order to work properly
	By selecting parts that were easily interfacing it allows more efficient use of time and less program

	Small bolts
insufficient strength
	The small bolts are not strong enough to
make the structure secure and strong enough to withstand small impacts
	Low
	“Moderate”
Structure could break on impact
	Increase Plexiglas width
so bigger bolt can
be used that has more strength

	Plexiglas
cracking
	The Plexiglas cracks during drilling and
tapping process
	Moderate
	“Moderate”
Plexiglas would crack
	Increase
Plexiglas width, so it is less likely
for it to crack
because it has more strength

	Timing
Unsynchronized
	The GPS module provides times that are
lagging that of the signal received by the GPS satellites
	High
	“Minor”
Nanosecond timing is no longer accurate
	Issue can be
corrected by editing the coding
for the GPS unit.

	Unable to
interface GPS
	Unable to interface with microcontroller
	Low
	“Moderate ”
	The GPS Shield
was chosen because it can be easily integrated with the chosen microcontroller.

3. [bookmark: _Toc354781402]Design of Major Components/Subsystems
[image:]
Figure 3 Power Analysis
3.1 [bookmark: _Toc354781403]Scintillator

The scintillator produces photons when a cosmic ray deposits energy in it. In order to maximize the number of photons produced and captured, the scintillator size needs to be maximized and the sides polished and painted. The project required a 4in cubed scintillator size. The team was given two pieces of scintillator that were nearly identical in size. Testing was done without permanently bonding the two pieces together. Results suggested that one solid piece of scintillator may be better than two joined ones, although permanently bonding the two with optical glue may have been required.
	In order to maximize the number of photons that get detected by the MPPC, the MPPC needs to be permanently bonded, via optical glue, to the scintillator and the contact area made perfectly light tight. This will ensure that no photons are able to escape from the scintillator-MPPC combo as well as prevent the MPPC from damage due to excessive outside light. High reflectivity white paint (Teflon) was chosen and many layers were added to the scintillator until no more light could be seen when shining a light through it.
	In order to utilize both pieces of scintillator, both pieces need to be bonded together using permanent optical glue. Once bonded together, the seam created needs to be painted with the high reflectivity paint to prevent photons from escaping.
The type of scintillator chosen is EJ204, made by Elgen. It emits light in the 408nm range with a yield of 10,400 photons per 1MeV absorbed. The size of the scintillator is to be about 10cm on each side. Shielding the scintillator from light will entail painting the scintillator with a material such as Teflon or Tyvek paint and then wrapped in Tyvek material.
The EJ204 material was chosen because it is readily available, relatively easy to machine, and a sufficient amount was provided to us. Although it isn't the perfect choice, given our photo- detector's parameters, it is expected to be adequate. The polished material can be seen in Figure 4 below.

	TYPE
	PHOTONS/MeV
	WL(nm)

	EJ208
	9200
	435

	*EJ204
	10400
	408

	EJ200
	10000
	425

[image:]
Figure 4- Polished Scintillator

	Currently the scintillator material is being painted with white Teflon base paint to block out as much light as possible as seen in the following pictures: Once the scintillator is sufficiently painted and glued together, it will be wrapped in Tyvek in order to ensure that there is no light entering the scintillator that could produce false readings from the sensor. A small hole will need to be made while wrapping the scintillator for the sensor to be attached to the scintillator. A type of silicone may be used to help make sure light doesn’t get into where the sensor is place on the scintillator material. Figure 5 below shows one piece of the scintillator with one coat of the Teflon based paint on and the other polished piece next to it for comparison, while Figure 6 shows how reflective the inside of the scintillator material is after painted.

[image:][image:]
Figure 5- First coat of Teflon paint		 Figure 6- Reflectivity of Painted Scintillator

3.2 [bookmark: _Toc354781404]Photo-Detector

Since the output pulse of the MPPC is very small in amplitude and very short in length, the MPPC will require both an amplifier and a pulse stretcher. The amplifier will consist of a simple OP-AMP set to for a gain of 100-1000 depending on the magnitude of the pulse produced by the scintillator and photo-detector combo. The pulse stretching will be done by a diode and capacitor. As the signal change from high to low, the capacitor will charge through the diode. Once the microcontroller has finished with the pulse, the microcontroller will be set to discharge the capacitor. Advanced testing of the scintillator + photo-detector will need to be done before the amplifier and pulse stretcher can be finalized.
The MPPC chosen is the S10362-33-025C, made by Hamamatsu. It is a 14400 pixel MPPC with an active area of 3mm by 3mm. The MPPC requires a voltage of 70v to operate. It will interface with the scintillator through optical grease. It was chosen based on its large active area, high number of pixels, and it being provided to the group for free.

	PART #
	AREA (mm^2)
	PEAK WL (nm)
	PIXELS
	COST($) S10362-33-025c

	S10362-33-025c
	9440
	14400
	323.00
	

	S10362-11-100U
	1
	440
	100
	144.00

	*S10362-11-025U
	1
	440
	1600
	144.00

3.3 [bookmark: _Toc354781405]Microcontroller/CPU

The microcontroller selected for use in the cosmic cube project is the Arduino Mega 2560 R3. The Uno microcontroller is both affordable and can be easily powered via USB or power supply. The following table shows the requirement and justification for a possible component selected for use:

	Requirements:
	Justification:

	Clock speed under 100 nanoseconds
	Multiple cubes collecting data in locations around the world must be able to keep precise timing data for cosmic particles detected.

	At least 5 Digital Input/output Pins and 5 Analog Input Pins of Channels
	Each Microcontroller will eventually be responsible for controlling multiple sub-cubes to correlate data

	Price
	This will eventually be a commercial product and needs to be affordable to the mass market

	The microcontrollers evaluated for possible selection in this project range in memory size, number of inputs, price, etc. Below is a table that indicates which microcontrollers were compared and the component that was chosen. Ultimately, when selecting a microcontroller it came down to price because the main goal of this project is developing an affordable consumer product. The Arduino meets all requirements needed for this project, the price is affordable and will not hurt the budget of this project. It also has plenty of memory given the price of this chip and it has enough pins to allow control of the system with not only one sub- cube but the possible integration of additional sub-cubes.

	Part
	Clock Speed (ns)
	# of Channels
	Memory
	Interrupts
	Price ($)

	Stratix III
	2
	272 I/O
	144KB
	Y
	2,895.00

	*Arduino 2560 R3
	63
	54-D-I/O; 16A-I
	256KB
	Y-External
	58.95

	DAQ-2000
	25
	24-D-I/O;4 A-I
	-
	Y
	595.00

3.4 [bookmark: _Toc354781406]Global Positioning System (GPS)

The GPS module chosen for the project is the Fastrax UP501 GPS receiver. It is mounted on top of a GPS Shield designed to interface directly on top of the Arduino Mega 2560 R3. The purpose of the GPS module is to provide timing and positional data for incoming cosmic events received by the cosmic cube. The design parameter for the accuracy of the timing data had to be within 100ns. Out of the box the Fastrax GPS Receiver has an accuracy of 50ns thereby meeting this parameter. Soldering was needed to mount the GPS Receiver to the GPS Shield along with headers for the connections that would lead into the Arduino. The GPS has 6 I/O pins: Receiving, Transmitting, Ground, Main Power, Backup Power, and the PPS pin. The main power and backup pin are connected to the 3.3V source on the Arduino. The backup pin is needed for the GPS Receiver to operate. Its purpose is to make for quicker startup of the GPS module. It does this by keeping the GPS Receiver on a low power state even when the cosmic cube is unpowered. While operating in backup mode, meaning the power to the host is lost, the GPS will keep using its RTC oscillator and retain satellite ephemeris data and user configurations. The transmitting and receiving pins are connected to the Arduino through pins 11 and 12 on the Arduino. A 10K resistor is added between digital pin 12 and GPS RX as well as from GPS RX to ground to protect the GPS Receiver so as to not put 5V on the data pin.
The GPS receiver will also be programmed through the use of the Arduino IDE. Sketches will be uploaded to the receiver via USB connection from the Arduino to the user’s PC.
Currently the GPS Receiver will out the current date, time, and latitude and longitude coordinates once it is signaled by the TPU that a signal has been recorded.
The coding done for the Receiver can be found in Appendix.

[image: C:\Users\Dogstar\Desktop\IMG-20130207-00697.jpg]

Figure 4 Fastrax UP501 Receiver mounted to Arudino GPS Shield

3.5 [bookmark: _Toc354781407]Wi-Fi

The purpose of the WiFi module is to transfer data recorded by the cosmic cube wirelessly to the user’s pc. This data can then be accessed through a server and saved as a text file. The WiFi module chosen for the prject is the WiFi Shield which is designed to interface with the Arduino 2560 R3.

The Wi-Fi shield selected for use is the DEV-11287(Arduino WIFI Shield). A schematic for the Wi-Fi shield is shown in Figure 5.

[image:]Figure 5 Schematic of DEV-11287 (Arduion Wi-Fi Sheild)

[image: C:\Users\Dogstar\Desktop\IMG-20130207-00702.jpg]Figure 6 Arduino Wi-Fi Shield

Coding for the WiFi Shield as well as pictures taken of the data sent to the server can be found in the Appendix.
3.6 [bookmark: _Toc354781408]Structure

There will be two compartments inside of the single-unit cube. The bottom compartment houses the electronics. The top compartment contains the scintillator and the deflection material (if the user chooses to use it). The sensor is located in the middle plate in a slot that is located in the center of the cube directly under the scintillator. Aluminum brackets are used to hold the scintillator and deflection material securely in position over the sensor lens. The single-unit cube design is 8 inches on a side. The top compartment is 4.25 inches tall, while the bottom side is 3 inches tall. The extra ¾” of height is used by the thickness of the polycarbonate. The top compartment Figure 7 is made of 1/4" Polycarbonate and glued together using a specific adhesive designed for polycarbonate.
[image:]
Figure 7-Top sub-cube compartment

The bottom compartment Figure 8 of the cube is made of clear 1/4" polycarbonate and glued together using the same adhesive as the top compartment. Having the electronics in a clear enclosure will have an appealing look to consumers since they can then see the "brains" of the cube.
[image:]
Figure 8-Bottom sub-cube compartment

The single unit cube sides are as symmetric as possible to increase the ease of manufacturability and assembly. Since nearly everything will be bolted together, a consumer could make new parts to enhance or alter the cube to better fit their specific needs.

The original sub-cube design is shown below. The concept for the multi-cube structure did not change, however the size did change along with the size of the cube, and when it was decided to do single and mult-unit cubes.
[image:]
Figure 9- Original Sub-Cube Design

The multi-unit cubes will attach to each other through a cubby-hole type design. One section of this structure can be seen in Figure 10 below. The cubes will individually slide onto a shelf that can hold one row of three cubes. These sections can then be bolted to the side or on top of another section in order to add more cubes. The current design is to allow for a total of 27 sub-cubes in a "cubic" shape; however more sub-structure sections can still be added, but it will not make the cube shape.

[image:]
Figure 10-Single Piece of Multi-Cube structure

3.7 [bookmark: _Toc354781409]Radioactive Isotope

Strontium 90 is the isotope that will be used. It is a beta emitter that emits a beta with energy of 546KeV and has a half-life of 28 years. The isotope source will be placed on the scintillator's lead plate and the output pulse will be measured on an oscilloscope. Strontium 90 was chosen because the beta energy is more likely to be absorbed than a gamma emitter.

	Isotope
	Energy(KeV)
	Half-Life (years)

	*Strontium 90
	546
	28

	Cs-137
	661
	30.1

	Eu-152
	1408
	13.5

3.8 [bookmark: _Toc354781410]Power Supply

The PSU (power supply unit) consists of a standard multiple output low voltage power supply and a high voltage variable power supply. The low voltage supply will provide 12DC volts for the Arduino UNO board, 5DC volts for the GPS shield, and 3.3DC volts for the WIFI shield. It will work off of 120VAC.
The high voltage power supply chosen is the A01, made by EMCO. This power supply can supply up to 100VDC at 10mA depending on the input voltage of 0-5VDC. This power supply is solely meant for the photo-detector. A voltage divider along with the 5v low voltage power supply will set the input voltage and thus the output voltage.
The low voltage power supply was chosen because it has the proper voltages for all of the main components, minus the photo-detector. The high voltage power supply was chosen based on its output voltage being ideal for the photo-detector as well as its ability to be controlled viasimple means.
The MPPC that creates the pulse requires 70V +/-10V in order to function. There are several ways to achieve this voltage. One way is by using a precision HVPSU made by EMCO. The majority of the testing was done using an EMCO HVPSU in the lab that was controlled by a program run on a laptop. EMCO also makes similar 1W HV PSUs that can be controlled with a voltage divider or a programmable voltage source.
	During testing, the team also tried a string of 9V alkaline batteries and a potentiometer. This was to assure that no noise from a PSU was affecting the output from the MPPC since batteries produce a clean DC signal. The drawback to 9V batteries connected in series is that they discharge, thus lowering the voltage, as well as take up a lot of space. In the long run, they will cost far more than a precision EMCO PSU.
[image:]

	

3.9 [bookmark: _Toc354781411]Time Processing Unit (TPU)

The TPU was chosen late in the component selection process for the Cosmic Cube project and therefore was not compared with two other possibilities for TPU chips. However, the chip was nevertheless still researched, evaluated and approved by an advisor.

This chip selected as the TPU was the DE0 Nano by Altera similar to each of the components that were selected for this project it had to meet the criterion in order to be selected. The TPU had the following requirements/justification to meet:

	Requirements:
	Justification:

	Clock speed under 100 nanoseconds
	Multiple cubes collecting data in locations around the world must be able to keep precise timing data for cosmic particles detected.

	At least 5 Digital Input/output Pins and 5 Analog Input Pins of Channels
	Each Microcontroller will eventually be responsible for controlling multiple sub-cubes to correlate data

	Price
	This will eventually be a commercial product and needs to be affordable to the mass market

	Memory
	Enough memory to program multiple libraries, needed for interfacing with multiple components

[image:]

[image:]
[image:]

Figure 7 High Level Architecture of TPU
· time_stamp.vhd
· This file will be responsible count the nanoseconds in between each GPS PPS (pulse per second) signal and store in a std_logic_vector until arduino is ready for transmission of the data.
· board_comm.vhd
· This file will be responsible for signaling the CPU when data is ready for transmission as well as waiting for the CPU to send signals to show that CPU is ready for the transmission of data.

Producer/Consumer Communication Logic

The following is an outline of the how both The TPU and CPU will communicate, which signals signify where in the process and when the boards are ready for transmission of data and when all the data has bent sent or received by the board.

Producer = TPU = DE0 Nano
Consumer = CPU = Arduino Mega 2560

1.)	When the TPU has seen an event and has recorded the time, the TPU will send a signal to the CPU to signify that the TPU has data ready to be sent.
a.	Producer_TPU = ”1”

2.)	Once the CPU has recognized that the TPU has data, the CPU will then send a signal to the TPU signifying that it has collected the magnitude of the wave and ready receive the first 8 bits of data.
a.	Consumer_CPU = “1”

3.)	As soon as the CPU is absolutely ready for a set of 8 bits of data it will send a signal to the TPU, giving it the permission to send its first set 8 bits (or 1 byte) of data.
a.	Pump_data_CPU = “1”

5.)	Upon receiving this set of data, the CPU then proceeds to store it in its memory and then prepares for next byte of data to be sent and will output the following signal. On the other hand the CPU will change states and prepare to load the next set of data into the 8-bit pipeline.
a.	Pump_data_CPU = “0”

6.)	Then TPU will load each of the new bit values into the 8 bit pipeline.

7.)	Steps 3 through 6 will be repeated until all 40 bits (or 5 bytes) have been sent in increments of 8 bit sets.

8.)	Once all the bits have been received by the CPU it will send a signal to the TPU indicating that all the bits have been received.
a.	All_data_received_CPU = “1”

9.)	Once both of the signals, All_data_received_CPU have high values, both processors will reset themselves and prepare for the time data for the next cosmic particle event.
a.	Consumer_CPU = “0”
b.	Producer_TPU = “0”
c.	Pump_data_CPU = “0”
d.	Sent_data_TPU = “0”

3.10 [bookmark: _Toc354781412]Amplifier

The pulses produced by the MPPC are very small (50mV) and very short lived (50ns). Because of this, the current electronics have trouble even “seeing” the pulses. The AD8000 is a very high speed op-amp that was found to be capable of operating at this level. Since the pulses produced by the MPPC are negative, the AD8000 was configured to run in the inverting mode.
	The current status of the amplifier is that it is able to amplify a simulated pulse, but not an actual cosmic ray event pulse from the MPPC. A pulse from a function generator along with a very high speed oscilloscope was used to verify the AD8000’s suitability. A 50ns long pulse with amplitude of 50mV was connected to the AD8000’s input, and a gain of 36 was used to multiply the pulse amplitude.
	Currently, the AD8000’s power supply consists of a dual voltage PSU (+/- 4.5V) that was constructed from 9V alkaline batteries and resistive voltage dividers. This is a less than ideal setup considering the wasted power and heat created by the voltage dividers. This was chosen hastily for testing purposes as the AD8000’s maximum operating voltage is 12V and the two 9V batteries would have placed 18V across the AD8000.
	A few considerations must be made for future use of the AD8000. One design consideration is that there is a ground connection on the underside of the AD8000 package that needs to be connected to ground. A proper custom PCB will need to be designed that takes this into account. Another consideration is that adequate bypass capacitors need to be used on the AD8000 power connections. This may not be an issue if battery power is used since batteries don’t have a noise component. Other considerations to be addressed relate to whether or not the gain is sufficient and the inverting configuration is needed. The AD8000 is an op-amp and follows the basic principles that govern all op-amps. The team had trouble getting the AD8000 to amplify the actual pulses produced by the MPPC. While it is believed that having the ground pad connection left unconnected is part of the problem, it is also believed that noise from actual IR is also to blame. The scintillator is sensitive, to some degree, to IR light (essentially heat). Minimizing heat as well as shielding the scintillator from IR could possibly solve the issue experienced by the team.
[image:]
Figure 8 Amplifier Circuit

3.11 [bookmark: _Toc354781413]Pulse Stretcher

The pulse width of the MPPC output due to a cosmic ray event was found to be approximately 50ns. This is much too fast for the Arduino MEGA2560 to be able to detect in order for it to find the amplitude. The team decided on a 10ms long pulse as being sufficient for the Arduino. In order to stretch a 50ns pulse to 10ms, a simple capacitor and resistor combo was chosen. A capacitor is charged through a diode (to prevent current from flowing backwards) and then discharged through a resistor. Once stretched, the Arduino is able to sufficiently chop up the pulse and find its maximum amplitude.
	The actual pulse length of the stretched pulse is governed by the RC time constant. For example, a 1uF capacitor discharging through a 10kohm resistor will take 10ms to discharge. In practice, the concept isn’t so simple. The above scenario was originally chosen by the team. Upon testing, it appeared as if the pulse stretcher wasn’t working. After careful thought and more time spent in the lab, it was realized that the 50ns pulse from the MPPC wasn’t long enough to charge the 1uF capacitor, as the amplitude was in the 5mV range (even after amplification). Using the equation for voltage on a capacitor, Vc = V(1-e^(-(t/RC))), and accounting for the voltage drop across a diode (0.7V), it was decided that a 0.001uF capacitor and a 10Mohm resistor would be needed to achieve a pulse length of 10ms and enough voltage to be useful with the Arduino.
4. [bookmark: _Toc354781414]Test Plan
4.1 [bookmark: _Toc354781415]Test Plan for Major Components

4.1.1 [bookmark: _Toc354781416]Scintillator
During the painting stages to test how well the Teflon based paint is blocking out the light entering the scintillator, a bright light was shone into one of the painted sides to see if the light was able to pass through to the other side of that painted surface. Once the light appeared to be sufficiently blocked out from all sides, the top and bottom pieces of the scintillator will be attached using optical glue.
Although the scintillator pieces were not permanently attached, both pieces were wrapped with a Tyvek material, which helps ensure that no external light gets into the scintillator material. Once the scintillator was fully wrapped, a small hole was made on one side for the sensor to be attached.

Preliminary Test Reporting Form

Test item: Scintillator						Item ID No. 1
Tester name: Cole Gray					Tester ID No. COE
Test date 1/21/2013						Test No. 1
Test time 7:00PM						Test type: Test
Test location: House

Test Objective: To observe if any light can penetrate through any of the painted sides of the scintillator material.

Test Description: A bright light will be shined directly onto one of the painted sides of the scintillator at a time. If light can be seen coming through the side, another coat of the Teflon based paint will be added to that side.

Anticipated Results: No light will enter through any of the painted sides.

Actual Results: A small amount of light passed through one side.		

Test Result: Fail
Final Result: Pass

Reason for failure: This particular side did not have the same amount of coats as the other sides.
Recommended fix (if known): Add another coat to that specific side, and repeat the test.	
Other comments: Once the two pieces of the scintillator are glued together, another coat of paint may be added to help seal the sides that are currently unpainted.

4.1.2 [bookmark: _Toc354781417]Photo-Detector

Preliminary Test Reporting Form

Test item: Photo-Detector					Item ID No: 2
Tester name: Matt Gibson					Tester ID No : TEAM
Test date: TBD						Test No. 1
Test time TBD						Test type: Test
Test location: FAMU LAB

Test Objective: The purpose of this test is to decide whether or not the Hamamtsu photo-detector chosen will produce a pulse when a cosmic ray passes through the scintillator.

Test Description: The photo-detector will be temporarily connected to the scintillator and an EMCO programmable HVPSU will be connected to the photo-detector. The scintillator detector combo will be placed in a light-tight enclosure and then placed in-between the existing cosmic ray detector that is located at the FAMU lab, such that a cosmic ray passing through the detector will also pass through the scintillator under test. An oscilloscope will be programmed to record the output from the photo-detector when the existing detector detects that a cosmic ray has passed through it.

Anticipated Results: In order for this test to pass, the photo-detector must produce a pulse when a cosmic ray has passed through the scintillator. The pulse amplitude and pulse width will be measured for finalizing the amplifier and pulse stretcher parameters.

Actual Results:	

The following images are taken from the High Powered Oscilloscope found in Florida A & M University, Physics Lab and was operated with the assistance of Dr. O’Neal. The Cosmic Cube tested in parallel with Cosmic Eye Detection Paddles to be used as the control variable within the test.

· Blue : Cosmic Cube
· Magenta : Cosmic Eye Paddle Detector #1
· Yellow : Cosmic Eye Paddle Detector #2

[image:]

[image:]

“It can be seen that in both images that the Cosmic Cube is correctly detecting cosmic particles, with substantial amount energy. The energy deposited within the scintillator is converter into millivolts, in the images above approximately 50mV which indicates a strong cosmic particle depositing energy.”
						
Test Result: Pass or Fail
Reason for failure:	N/A
Recommended fix (if known):	N/A		

4.1.3 [bookmark: _Toc354781418]Global Positioning System (GPS)

Problem Diagnostic Test Reporting Form

Test item ____GPS Shield ___________		Item ID No. 4________________
Tester name _____Don Lundi_________		Tester ID No. _____6870______
Test date ____2/03/2013_____			Test No. _________1__________
Test time ____9:30________PM			Test type: Test
Test location ______Home______________

Test Objective: To check that GPS can obtain fix to GPS satellites and provide position and timing data.

Test Description: A sketch for the GPS shield will be uploaded to the device via USB connection from the PC to the Arduino. The sketch will set the update rate of the GPS receiver as while as print NMEA sentences relaying the data obtained from the GPS satellites to the Serial Monitor.

Anticipated Results: The GPS Shield will be able to lock onto GPS satellites after initial startup and be able to provide timing and position data from the GPS satellites.

Actual Results: The GPS shield was able to boot and provide information to the Serial Monitor that it was operational. However, it was not able to provide any data from the GPS satellites.
	
Test Result: Fail

Reason for failure: The GPS shield was booted indoors which could have interfered with obtain lock to GPS satellites.

Recommended fix (if known): Will test device outdoors to obtain lock to satellites.

Other comments:

4.1.4 [bookmark: _Toc354781419]Wi-Fi
Problem Diagnostic Test Reporting Form

Test item WiFi Shield						Item ID No: 5
Tester name Don Lundi				Tester ID No. _____6870______
Test date: 1/23/13					Test No. _________1__________
Test time ____2:30_PM				Test type: Test
Test location ______Home______________

Test Objective: To check WiFi shield was operational and that it could connect to existing connections both none encrypted and with WPA2 personal encryption.

Test Description: A sketch for the WiFi shield will be uploaded through the Arduino Mega. Then the Arduino with attached WiFi shield will be reset and the LED lights on top the WiFi shield will be monitored to determine if WiFi is powered on. Then through the Serial Monitor in the Arduino IDE internet connection through the WiFi shield will be monitored.

Anticipated Results: When Arduino is reset the WiFi shield indicator LED will be on and the WiFi shield will be connected to the local internet connections.

Actual Results: The WiFi shield was able to power on and connects to the open internet connection but failed to connect once the connection was encrypted using WPA2 personal.
	
Test Result: Fail

Reason for failure: Within the code for the WiFi shield no parameters were placed to accept the users password for the encrypted connection thus the shield was unable to access the internet.

Recommended fix (if known): Will add in additional code to use network password provided by user to access encrypted network.

Other comments:

Problem Diagnostic Test Reporting Form

Test item WiFi Shield					Item ID No. 5
Tester name Don Lundi				Tester ID No. _____6870______
Test date 1/23/2013					Test No. _________2__________
Test time 6PM 						Test type: Retest
Test location ______Home______________

Test Objective: To check that WiFi shield is able to connect to existing WPA2 personal encrypted networks.

Test Description: An updated sketch for the WiFi shield will be uploaded through the Arduino Mega. Then through the Serial Monitor in the Arduino IDE internet connection from the WiFi shield will be monitored.

Anticipated Results: The WiFi shield will be connected to the encrypted internet connections after the user has provided the network’s passcode.

Actual Results: The WiFi shield was able connect the connection was encrypted using WPA2 personal.
	
Test Result: Pass

Reason for failure: N/A

Recommended fix (if known): N/A

4.1.5 [bookmark: _Toc354781420]Structure

Three of the multi-unit sub-cubes will be able to fit into one section of The Cube structure. To test this section of the structure once it was built, stability was checked and that the multi-unit sub-cubes will fit and still have enough room for the external wires to be run without being pinched or under any other pressure on the wires. Although the single-unit cube underwent many variations in size and how it will be connected, the overall concept did remain nearly the same from the early stages of design. The main changes were making the entire cube out of polycarbonate as opposed to aluminum and Plexiglas, and the top and bottom compartments were assembled with a polycarbonate adhesive as opposed to bolting all of the sides together.

	Possible Ray Scatter Materials

	Material
	Density (g/cm^3)
	Price($/ounce)

	Lead
	11.36
	$0.06

	Silver
	10.49
	$34.60

	Bismuth
	9.78
	$1.06

	*Ecomass Compound
	11.0
	N/A

	Possible Cube Materials (12x12 Plate, 0.25" Thick)

	Material
	Weight/Ft^2 (lbs)
	Price ($)

	Plastic Acetal
	1.8126
	$27.58

	Al 6061
	3.528
	$28.54

	*Polycarbonate
	0.012
	$15.58

	Stainless Steel
	10.322
	$96.11

Preliminary Test Reporting Form

Test item _____Sub-Cube___________		 	Item ID No. _________________
Tester name _____Cole Gray _______		 Tester ID No:____COE_________
Test date ____TBD________				Test No. _________1___________
Test time ______TBD_____AM or PM				Test type: Test
Test location ___Either COE or Home_

Test Objective: To test fit all of the electronics including wiring and the scintillator to make sure everything can fit

Test Description: The electronics and the wiring for the system will be fitted in the sub-cube to find the most efficient and appealing way to arrange the electronics using the ProE depictions of the entire system.

Anticipated Results: The cub-cube should have ample room for all of the electronics to fit safely. There should be room to have multiple choices of how the electronics should be arranged for ease of removal or to appeal to the consumer.

Actual Results: There was ample room for the chosen electronics		Test Result: Pass

Reason for failure: Did not fail.

Recommended fix (if known): N/A		

Other comments: During testing, parts of the amplifier circuit were getting hotter than expected, future power analysis/heat transfer may be necessary if this excessive heating issue is not solved.

4.1.6 [bookmark: _Toc354781421]Time Processing Unit (TPU)

Preliminary Test Reporting Form

Test item: TPU (Time Processing Unit) Clock		Item ID No. _ #9_
Tester name: Kenneth Spradley				Tester ID No. _300108798_
Test date 2/6/13						Test No. 1_________
Test time 2:15 pm						Test type: Test or Retest
Test location :COE (College of Engineering)

Test Objective: Test the accuracy of the 20 MHz Clock on the TPU

Test Description: See how much the clock on the TPU varies over 2 minute intervals.

Anticipated Results: Expect the TPU to be very close to the actual number of nanoseconds found over a 2 min interval.

Actual Results:							
The number of counts for clock varies slightly from test to test.

Test Result: TBD
Reason for failure: TBD

Recommended fix (if known):			

Other comments:
Reperform the test to see if the clock varies based on temperature. Test in additional 2 different environments if possible.

Preliminary Test Reporting Form

Test item TPU (Time_stamp.vhd)				Item ID No. _ #9_
Tester name Kenneth Spradley				Tester ID No. _300108798_
Test date 2/5/13						Test No. 1_________
Test time :6:55pm						Test type: Test or Retest
Test location _____COE (College of Engineering)__________

Test Objective: Test to see if one of the time_stamp functions is working and coded properly.

Test Description: Are there any logic or coding errors.

Anticipated Results:
No issues in logic but perhaps some issues with incrementing a 40 bit_vector properly or transmission of the bit vector.

Actual Results:							
Incrementing the 40 bit vector was not working properly.

Test Result: Pass or Fail

Reason for failure:
Not sure

Recommended fix (if known):			
Using a different data type such as std_logic_vector possible easier for the logic and libraries I defined in the time_stamp function.

Other comments:

Preliminary Test Reporting Form

Test item _______TPU (Synch_flip_flop_5.vhd)__			Item ID No. _ 2.3.9_
Tester name Kenneth Spradley______________			Tester ID No. _300108798_
Test date ______3/05/13____					Test No. 4_________
Test time __8:45pm________AM or PM				Test type: Test or Retest
Test location _____COE (College of Engineering)__________

Test Objective: Test to see if the synchronous flip flops are working and will synchronize two different boards that have a clock speed at 100 nanoseconds and 20 nanoseconds

Test Description: Are there any logic or coding errors.

Anticipated Results:
No issues in logic.

Actual Results:							Test Result: Pass or Fail
[image:]

Reason for failure:
N/A

Recommended fix (if known):			
N/A

Other comments:

Screen shot of the code simulated in ModelSim – Altera (6.5b) Quartus 9.1

Preliminary Test Reporting Form

Test item _______TPU (Time_stamp.vhd)__			Item ID No. _ 2.3.9_
Tester name Kenneth Spradley______________			Tester ID No. _300108798_
Test date ______3/16/13____					Test No. 4_________
Test time __2:55pm________AM or PM				Test type: Test or Retest
Test location _____COE (College of Engineering)__________

Test Objective: Test to see if the updated of the time_stamp functions is working and coded properly.

Test Description: Are there any logic or coding errors.

Anticipated Results:
No issues in logic.

Actual Results:							Test Result: Pass or Fail

Incrementing the 40 bit vector seems to be working properly as well as all updates to the code.

Reason for failure:

Not sure

Recommended fix (if known):			
N/A

Other comments:

Screen shot of the code simulated in ModelSim – Altera (6.5b) Quartus 9.1

[image:]

[bookmark: _Toc354781422]4.1.7 Amplifier/Pulse Stretching Unit

Preliminary Test Reporting Form

Test item: PSU						Item ID No. _____2.3.8	
Tester name: Matt Gibson					Tester ID No : GIBSONMAR
Test date: TBD						Test No. 1
Test time TBD						Test type: Test
Test location: HOME

Test Objective: The purpose of this test is to decide whether or not the power supply can satisfactorily supply the project. The Arduino has several on-board regulators that will be used to supply the correct voltage to the various components. The Arduino can work with a maximum of 12v input, so the PSU will need to be checked by a voltage meter before applying power.

Test Description: A digital multi-meter will be used to check the DC output from the power supply to ensure that the output isn’t greater than 12VDC.

Anticipated Results: In order for this test to pass, the output from the PSU must not exceed 12VDC. If it does exceed 12VDC, a diode could be used to trim the voltage down.

Actual Results:	TBD						Test Result: Pass or Fail

Reason for failure:	TBD

Recommended fix (if known):	TBD		

Preliminary Test Reporting Form

Test item: Amplifier/Pulse Stretch				Item ID No. 2.3.2.1
Tester name: Matt Gibson					Tester ID No : GIBSONMAR
Test date: TBD						Test No. 1
Test time TBD						Test type: Test
Test location: HOME + FAMU LAB

Test Objective: The purpose of this test is to decide whether or not the Amplifier is able to amplify a small signal and that the pulse stretching can lengthen the signal. This can be done at home. Also, the amplifier will need to be able to invert the signal.

Future tests will be done in the FAMU lab under guidance from Dr. O’neal in order to test the amplifier and pulse stretcher with the photo-detector.

Test Description: A low AC voltage will be used as the input to the amplifier. A oscilloscope will be used to observe the output before and after the pulse stretching is done.

Anticipated Results: In order for this test to pass, the output amplitude from the amplifier should be close to the input amplitude times the gain. Once the signal passes through the pulse stretching part, the period of the AC should increase. The signal should be inverted since the op-amp is being used in an inverting mode.
	
Actual Results:	
					
[image:]

The image of an amplifier pulse coming out of the amplified circuit, the sample pulse in this test was produce via function generator and viewed via oscilloscope.
[image:]

[image:]
In both images that stretching and amplified circuit are working together so that the pulse can be accurately be sampled by the CPU.

Test Result: Pass or Fail
			

[bookmark: _Toc354781423]4.2 Summary of Test Plan Status

The tests that have been completed by the team are summarized in the following table. The full test reports are compartmentalized by system components. The original tests are listed in the table to express the tests run by the team. If the original test was not passed adjustments were made and successive tests were completed.

	Scintillator Light Test
	1/21/13
	Fail

	MPPC Producing Pulse During Cosmic Event
	2/15/13
	Pass

	GPS Provide Position and Timing Data
	2/3/13
	Fail

	Wi-Fi Connect to Existing Connections
	1/23/13
	Pass

	Size of Sub Cube
	3/1/13
	Pass

	Accuracy of TPU
	2/16/13
	Pass

	TPU Synchronization
	3/5/13
	Pass

	TPU accuracy
	2/6/13
	Fail

	TPU accuarcy
	3/16/13
	Pass

	Power Supply Satisfactorily Fulfill Requirements
	2/16/13
	Pass

	Amplifier/Pulse Stretcher
	4/24/13
	Pass

5. [bookmark: _Toc354781424]Schedule

[image:]
6. [bookmark: _Toc354781425]Initial/Final Budget and Justification

For the actual production of this single unit prototype cube the Electrical and Computer Engineering Department sponsored the project with a $750 budget. The scintillator material and the photo detector were donated to the team by the FAMU physics department via Dr. Ray O’Neal. This donation saved the group a large sum of money and kept the team under budget at $557.72 (actual spending). The desired market price that was put in place by Dr. O’Neal for future production had a cap of $1,000. In actual production, where purchasing all components would be necessary, this price would have been exceeded by $201.72. This overage would hopefully be prevented by bulk ordering on materials, driving the cost down to reach the desired market price.

	Scintillator Material (EJ-208)
	$500.00
	1
	$500.00

	Photo Detector (S10362-11-025U)
	$144.00
	1
	$144.00

	Wi-Fi Shield (Arduino DEV - 11287)
	$84.95
	1
	$84.95

	GPS Shield (FASTRAX UP501)
	$76.66
	1
	$76.66

	LEDs
	$6.58
	1
	$6.58

	Polycarbonate
	$93.98
	1
	$93.98

	Angle Aluminum (1/8"X4')
	$9.69
	1
	$9.69

	DE0 Nano (Altera)
	$86.25
	1
	$86.25

	Microcontroller (Arudino Mega 2560 R3)
	$69.06
	1
	$69.06

	LED - RGB Diffused Common Cathode (COM-09264)
	$1.95
	5
	$9.75

	Jumper Wire F/F (PRT-08430) - Pack of 10
	$3.95
	2
	$7.90

	Jumper Wire M/M (PRT-08431) - Pack of 10
	$3.95
	2
	$7.90

	Optical Grease
	$105.00
	1
	$105.00

	
	
	Total Expenses:
	$1,201.72

	
	
	Acutal Spending
	$557.72

7. [bookmark: _Toc354781426]Conclusion

The original goal of the Cosmic Cube was to detect cosmic rays (muons, protons, and electrons) from outer space. The device was required to use a solid state detector and be able to keep timing precision under 100ns. The cost of the detector, when mass produced, shouldn’t cost more than $1000.00. Future goals for the project include being able to integrate into a 27 channel cube that is able to share data with other users. The size of a 27 channel device was to remain under 1m per side.
	The Senior Design team (team # 4) was able to detect cosmic rays by using EJ204 scintillator material, along with an MPPC from Hamamatsu. The cosmic rays were seen as negative pulses on a very high speed oscilloscope. Each pulse lasted approximately 50ns and the greatest amplitude was 50mV. Pulses didn’t occur very often, only a few per hour.
	The pulses produced by the MPPC were very short and very small. A high-speed amplifier and pulse stretcher were chosen to attempt to amplify and slow down the pulse such that the electronics could analyze the results. The amplifier chosen was the AD8000 op-amp. A gain of 36 was chosen along with an inverting configuration. The pulse stretcher consisted of a 0.001uF capacitor, 10Mohm resistor, and a 1N4148 diode. Simulated pulses were created on a function generator and results viewed on an oscilloscope. The AD8000 was successful at amplifying the very short pulses (simulated via function generator) as well as inverting the negative pulses. The pulse stretcher was able to stretch the 50ns pulse to 2ms. Strangely, the amplifier and pulse stretcher didn’t work very well with the MPPC.

GPS/WIFI Conclusion

	In order to share data with other users, electronics were needed to process the pulses. A DE0 nano board was used, along with a GPS, to keep accurate timing (100ns). An Arduino MEGA 2560 was used to calculate the pulse amplitude. A WIFI module was used to transfer data from the Cosmic Cube to a network server.

The CPU or Arduino Mega has interfaced with the GPS and Wifi successfully and met many of the design requirements specified in previous documentation. Currently programmed to interrupt when signal goes high, the CPU is able to sample any pulse stretched beyond the 30 microsecond period due to its board specifications. The current amplified and pulse stretching circuit can amplify a cosmic event to a threshold between 0V-5V which is readable by the CPU’s Analog-to-Digital Converter (ADC) and stretched for a period so the ADC can sample the cosmic wave multiple times and compare values to provide the user with greatest magnitude for the wave in voltages. In addition because the CPU is interfaced with the GPS and WIF, it will return both one’s current location via satellite in longitude & latitude coordinates, the local time at which the event occurred down to the nearest second and send that data over a WIFI network.

The TPU or DE0 Nano is integrated both with the GPS and CPU. Currently the TPU receives the GPs PPS signal via analog input on the TPU as well as the MPPC. The TPU also receive a digital signal whenever the CPU stores the magnitude of an incoming pulse. The TPU also has the ability to trigger the interrupt when it sees the signal from the MPPC to start the ADC process on the CPU.

Unfortunately, the code for the function 8-bit bridge was unable to be successfully integrated and completed on both sides.

Structure Conclusion

THIS SPACE FOR COLES CUBE SPECS

	The team chose relatively slow electronics because of the budget. Pulse stretching was used to slow the pulses down enough for the electronics to “see” the pulse. This was a good solution for a single channel cube, but not so good for a 27 channel cube. Since cosmic rays move very quickly, timing is critical. A clever and well thought out design for the amplifier and pulse stretching will need to be turned into a custom PCB. Each channel will need one of these custom PCBs. The MEGA 2560 CPU isn’t capable of 27 channels so a much more advanced CPU will need to be used that can operate at much higher speeds. This is critical for assuring that the pulse, traveling through the full 27 channel cube, is accurately captured. Better design and packaging can further reduce the size of each single cube. Less space in between each cube will increase the likelihood of capturing the ray.
	The team budget was kept under the original $750.00 limit, but only due to donations from Dr. O’neal, the team’s main advisor. The most expensive part of the project would have been the scintillator and the MPPC. The team hopes that mass quantities along with a more mature design may bring the price point down under the $1000.00 target. The team was able to show that the AD8000 is fast enough to amplify the very short and relatively small pulse. The team also showed that an MPPC is a suitable, although very challenging, solid state detector for use with scintillation material (EJ204). Further work should focus on a dedicated PCB for high speed portion as well as more work with the CPU time keeping and pulse height detection.

Possible Future Sensor Modifications:

	A few ideas for the failure to integrate the amplifier and the MPPC have been considered. One, is that the MPPC is heating up (slightly) and causing thermal noise. This issue wasn’t addressed due to time and money constraints. Another issue could be related to poor amplifier circuit design. Breadboards were used for the amplifier and pulse stretcher along with a lot of long wires that may be picking up noise. A dedicated, and well thought out RF designed, PCB may solve the noise issues. Noise filtering is also a major issue. Often times, the magnitude of the noise out of the MPPC is just as great as or greater than the pulses produced by cosmic rays. A method for recognizing this noise as noise will need to be implemented. Another possible solution to this noise would be to detect the shape of the pulse since the cosmic rays tend to look very similar.

Possible Future Software Modifications:

The CPU/TPU could be a single microcontroller, however it is best to make sure this single board has both the speed requirement needed by the TPU and ability to convert cosmic events analog signal’s both amplified and stretch magnitude into a single unit like the CPU. Once this new board is selected it is recommend that the programmer adjust the code to the preferred programming language.
The programming for the Multi-Cosmic Cube Array was not started because the single Cosmic Cube is only in its first year of development. In addition the funds allocated to Team #4 via the Electrical Engineering Department was only enough money to start the development of a single Cosmic Cube after approximately $500 dollars in parts were donated from Florida A&M University – Physics Department.

Possible Future Structure Modifications:

	The single-unit cube can be minimized once the final electronic boards are completed. Currently, no cooling system was deemed necessary inside of the cube, however once the final electronic boards are in place, it may be necessary to determine a means of cooling for the cube. The MPPC is currently believed to not need cooling, but a possibility of reducing the noise from the sensor could be due to heat being released from the electronics or sensor itself. To insure that no light can reach the scintillator or MPPC, the top half of the cube should also be blacked out. A simple solution could be to use black polycarbonate as opposed to clear. Although no official stress testing of the cube was completed, the structure appears plenty strong for the desired application, hence in order to reduce the cost further, a thinner polycarbonate could be used, however this will make it less resilient to impacts.
	Since the multi-unit cube is currently design for a 27 cube segment array, possible future improvements would allow the structure pieces to not only be able to bolt side to side and top to bottom, but also allow to be bolted front to back, this would allow the multi-cube array to essentially increase in size indefinitely. The current design uses aluminum, however the individual pieces require welding and some grinding in order to get smooth surfaces and assembly. A strong material alternative to aluminum is polycarbonate. When glued, polycarbonate is very strong as demonstrated with the single-unit cube. This would eliminate the need for welding and grinding which can warp the metal. Depending on the desired cubic array size, stress analysis may also need to be implemented.
	
8. [bookmark: _Toc354781427]References

[1] ELGEN-Scintillator specifications
[2] Hamamatsu-Photo-Detectors
[3] http://hardhack.org.au/book/export/html/2 Cosmic Ray Detectors
[4] http://www.arduino.cc/
[5] Burr, K.C.; Gin-Chung Wang; , "Scintillation detection using 3 mm × 3 mm silicon photomultipliers," Nuclear Science Symposium Conference Record, 2007. NSS '07. IEEE
, vol.2, no., pp.975-982, Oct. 26 2007-Nov. 3 2007 doi: 10.1109/NSSMIC.2007.4437179
URL:
http://ieeexplore.ieee.org.proxy.lib.fsu.edu/stamp/stamp.jsp?tp=&arnumber=4437179&is number=4437154
[6] http://www.onlinemetals.com/merchant.cfm?pid=724&step=4&showunits=inches&id=2 33&top_cat=1http://www.indexmundi.com/commodities/?commodity=lead
[7] http://www.kjmagnetics.com/proddetail.asp?prod=D61AD-P
[8] http://freckleface.com/shopsite_sc/store/html/polycarbonatesheetthreesixteenthsinchthick.
html
 [9] http://us-dc1-order.store.yahoo.net/cgi-bin/wg-order?ysco_key_event_id=&ysco_key_store_id=yhst-
5570599764068§ionId=ysco.cart&yscoc=wuuB4p4mAUcrpzx4_P7PiyThp7Kk049o Bx8yp8A1iVl1rdwKPd13USrMQbqUAGo6J0OboWX6SS9c5t6p5WVaZNb_nF9hi.8ZO Q242b4KifJj4hwqnA8BU1nPV1MZFAS7W47uPmrzY9DlEw--
&yscos=7k.oPKgmAUdJpIOzq3ulaghCA7vkbqZM26kS84sGYWwgK0BDO6aCCjx.Fn qrp7DPHusgg8QM.QHCFEo9GJGFWlBl_fOtoikwFvFe6e4PTQDhr5JSp4Q7f.gVuhnql. 3K8IyPR7ylWmyAcQ--
&yscob=a7WG0JAmAUf980peHYeQ_8oFCw32faNnW5Zq9uk3Z0g2l_rt.PQxhM8PBv 4sX78RzOrc8QbNbJPNm4I7Zs1ovfmuXQ_yoVQkP2ZA2axYemkXhc3w6wH1ObXzIt D7NcJZdQ—
[10] http://trl.trimble.com/docushare/dsweb/Get/Document-550777/
[11] http://trl.trimble.com/docushare/dsweb/Get/Document-
221342/ResolutionT_UG_2B_54655-05-ENG.pdf
[12] http://www.lanl.gov/milagro/cosmicrays.shtml
[bookmark: _Toc354781428]Appendix A – User Guide

Currently there is no official user manual because this project is for a prototype in development and will need future development before it is a system that can be public consumer friendly. The following information will be a list of items that will be needed to operate the project in its current state if this individual does not have the software or prior experience with this project.
To operate the Arduino Mega 260 (CPU) you will need to get the current software that is free and available for Windows, Mac or Linux and can be found at the following webpage: http://arduino.cc/en/main/software. Step for installation of this software can be found on the website as well as during the installation process.
[image: http://cdn.slashgear.com/wp-content/uploads/2011/11/pt_219.jpg]
To operate the DE0 Nano (TPU) it is recommended you select Quartus II 11.1 or a newer version because an older version of Quartus II like version 9.1 does not contain the proper DE0 Nano Chip type. Unfortunately, not all versions of Quartus are free and a license may need to be purchased in order to use the software for an extended period of time, however free 30-day trails versions of the software can be found on the Altera website.
[image: http://www.gfxtra.com/uploads/posts_images/1/2/120523/7d3d85564c7d477854de927c2982d22d.jpg]
In order to modify or update either the CPU or TPU code these software will need to be acquired.
Simulation of code that was programmed via Quartus II 11.1 was simulated in Modelsim-Altera (6.5b) Quartus II 9.1 Starter Addition. This 6.5b version of ModelSim-Altera is not an updated version of the software. This is not necessarily needed because it will only simulate the code and does not need the chip type or number to simulate properly.
[image: http://www.downserv.com/download/cache/a8202c31cdd3d4efed427752d341796e.jpg]
[bookmark: _Toc354781429]Appendix B - Software
a. [bookmark: _Toc354781430]CPU Code

“The following code is the Interrupt Service Routine (ISR) function using an external interrupt that would be triggered by the TPU.”

volatile int peak_val = 0; // Will hold the highest int value converted from the sensor signal

volatile int sensor_int = 0;		 //sensor value when coverted from Analog to Digital integer

int i = 0;
int ext_int = 3;	 // External Interupt Pin
int sensor_pin = A15;	 // Sensor Pin

void setup ()
{
 Serial.begin(9600);

 pinMode(ext_int, INPUT); // Pin 2 is External Interrupt - Rising
			 // Specific Pin that can use interrupt functions
 // Digital Pin #2

 pinMode(5, OUTPUT); 	 // Signal to TPU that CPU is done sampling signal

 digitalWrite(5, LOW); // Digital Pin 5

 attachInterrupt(1, signal_analyze, RISING); // External Interrupt from the TPU to signal the CPU to start sampling signal
					 // Interrupt format -> attachInterrupt(interrupt, function, mode)
}

void loop()
{

 Serial.println("Still Alive Only Idle ");

 //Serial.println(signal_data_array[i]);
 //sensor_int = analogRead(sensor_pin); // read the input pin
 //Serial.println(sensor_int); // The value that temp Value is stored to

 delay(3000);
}

void signal_analyze()
{

 Serial.println("Inside Interrupt ");
 digitalWrite(5, LOW); // Ensure Digital Pin 5 begins low
Digital integer

 for (int a=0; a<8; a++) // runs loop for 200 microseconds
 {
 sensor_int = analogRead(sensor_pin); // read the input pin

 if (peak_val < sensor_int)
 {
	 peak_val = sensor_int;
 }
 // Increments to change Prepare for the next signal wave

 float voltage = peak_val * (5.0 / 1023.0);
 Serial.println("Magnitude of the wave incoming wave in Volts ");
 Serial.println(voltage);

 // Increments to change Prepare for the next signal wave

 digitalWrite(5, HIGH); // This signal going High Indicates:
 // 1. The max value of the wave has been stored in peak_val
 // 2. Then stored in array.
 // 3. System will then prepare for next wave.
 peak_val = 0;
}

“The following code is the Board Communication function on the CPU side as it will be receiving a 40 bit nanosecond time data via 8-bit bus from the TPU.

int producer_tpu = 7; //Input Pin - 7 is not the correct value for that pin
 //High - TPU has recieved signal from CPU letting it know it is ready to start the transmission of data
 // - First Byte of data has been loaded and ready to be read
 //Low - Waiting for signal from consumer_CPU

 //Input Pins for 8 bit bus line
int dline_1 = 46; // bus_1 = 8 bit data bus line 1
int dline_2 = 47; // integer value = digital pin #
int dline_3 = 48; // line 3
int dline_4 = 49; // line 4
int dline_5 = 50; // line 5
int dline_6 = 51; // line 6
int dline_7 = 52; // line 7
int dline_8 = 53; // line 8

int bus_pin_array[8] = {dline_1,dline_2,dline_3,dline_4,dline_5,dline_6,dline_7,dline_8};

 // Bus pin values stored in array allows for
 // checking all of pin values in a loop for
 // 8 bit bus even if the pins are not numerical sequential

bool time_stamp [row][col]; // Array for storing multiple time stamp data
int row = 3; // Number of different time stamp data
int col = 40; // # of bits

int consumer_cpu = 5; //Output Pin - "5 is not correct value"
 //Set the integer value to the input pen #
 //Consumer_CPU
 //Low - Not Ready for time data
 //High - Ready for data

int pump_data = 9 ; //Output Pin - "9 is not the correct pin
 //High - CPU is reading current bit values through 8 bit bus
 //Low - Gives TPU couple of cycles to load next byte of data

void board_com(); // Fuction that will collect timing data from TPU
 // board_com -> Board Communications

bool mag_stored = false; // Variable that will activate board_com function only after interrupt has collected the magnitude
 // of the wave
 // False - The magnitude has not been stored yet.
 // True - Magnitude is stored
 // - Start Board_com

void setup()
{
	Serial.begin(9600);

 pinMode(consumer_cpu, OUTPUT);
 digitalWrite(consumer_cpu, LOW);

	// initialize the digital pin as an output.
	// Pin 13 has an LED connected on most Arduino boards:
	//pinMode(13, OUTPUT);

	//Serial.println("Hello world!");
}

void loop()

 {
 if (mag_stored == true)
 {
 Serial.println("Inside if-statement to activate board_com");
 board_com();
 }

/*
	delay(1000); // wait for a second
	digitalWrite(13, HIGH); // set the LED on
	delay(1000); // wait for a second
	digitalWrite(13, LOW); // set the LED off
	*/
}

board_com()
{
 int r=0;
 int c=0;
 digitalWrite(cpu_consumer,HIGH);

 if(digtalRead(producer_tpu) == HIGH)
 {
 for(int j=0; j<5; j++) //Loop for each of the data packets
 {
 digitalWrite(pump_data, HIGH); //Let TPU know that CPU is started reading the data

 for(int i=0; i<8; i++) // Loops through each of the 8 data lines
 {

 switch(digitalRead(bus_pin_array[i]))
 {
 case HIGH:
 time_stamp[r][c] = 1;
 c++;
 break;

 case LOW:
 time_stamp[r][c] = 0;
 c++;
 break;

 }
 }

 digitalWrite(pump_data, LOW); // TPU Load next byte of data
 delayMicroseconds(1); // Shortest delay time possible
 // Gives some clock cycles for TPU load data

 }

 }
}
b. [bookmark: _Toc354781431]Coding for GPS and WIFI Modules

#include <SoftwareSerial.h>
#include <TinyGPS.h>
#include <WiFi.h>

TinyGPS gps;
SoftwareSerial nss(11, 12);

static void gpsdump(TinyGPS &gps);
static bool feedgps();
static void print_float(float val, float invalid, int len, int prec);
static void print_float(float val, float invalid, int len, int prec);
static void print_int(unsigned long val, unsigned long invalid, int len);
static void print_date(TinyGPS &gps);
static void print_str(const char *str, int len);

volatile int peak_val = 0; // Will hold the highest int value converted from the sensor signal
volatile int sensor_int = 0;		 //sensor value when coverted from Analog to Digital integer

volatile int i = 0;
int ext_int = 28;	 // External Interupt Pin
int sensor_pin = A15;	 // Sensor Pin
int signal_data_array[200]; // Array of A to D conversions

char ssid[] = "SSID"; // your network SSID (name)
char pass[] = "Password"; // your network password
int status = WL_IDLE_STATUS;

WiFiServer server(80);

void setup()
{
 Serial.begin(9600);
 nss.begin(9600);

 pinMode(ext_int, INPUT); // Pin 2 is External Interrupt - Rising
			 	 // Specific Pin that can use interrupt functions
 		 // Digital Pin #2

 pinMode(22, OUTPUT); 	 // Signal to TPU that CPU is done sampling signal

 digitalWrite(22, LOW); // Digital Pin 5

 // attempt to connect to Wifi network:
 while (status != WL_CONNECTED) {
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);
 // Connect to WPA/WPA2 network. Change this line if using open or WEP network:
 status = WiFi.begin(ssid, pass);

 // wait 5 seconds for connection:
 delay(5000);
 }

 server.begin();
 // you're connected now, so print out the data:
 Serial.print("You're connected to the network");
 Serial.println();
 printCurrentNet();
 printWifiData();
 Serial.println();
}

void loop()
{
 if (digitalRead(ext_int)==HIGH)
 {

 Serial.println("Interrupt went High");
 sensor_int = analogRead(sensor_pin); // read the input pin
 float voltage = sensor_int * (5.0 / 1023.0);
 Serial.print("Magnitude of the wave incoming wave in Volts ");
 Serial.println(voltage);
 Serial.print("Time of Wave at: ");

 // Print TIme of wave to screen
 digitalWrite(22, HIGH);
 sensor_int = 0; // Reset back to Zero

 bool newdata = false;
 unsigned long start = millis();

 // Every second we print an update
 while (millis() - start < 1000)
 {
 if (feedgps())
 newdata = true;
 }

 print_date(gps);
 Serial.println();
 Serial.print("Position: Lat ");
 float flat, flon;
 gps.f_get_position(&flat, &flon);
 print_float(flat, TinyGPS::GPS_INVALID_F_ANGLE, 9, 5); //Latitude
 Serial.print("Lon ");
 print_float(flon, TinyGPS::GPS_INVALID_F_ANGLE, 10, 5); //Longitude
 Serial.println();
 // }
 delay(1500);
}

static void print_date(TinyGPS &gps)
{
 int year;
 byte month, day, hour, minute, second, hundredths;
 unsigned long age;
 gps.crack_datetime(&year, &month, &day, &hour, &minute, &second, &hundredths, &age);
 if ((hour)<4){
 (hour) = (hour+20);
 }
 else{
 (hour) = (hour-4);
 }
 if (age == TinyGPS::GPS_INVALID_AGE)
 Serial.print("*******");
 else
 {
 char sz[32];
 sprintf(sz, "%02d/%02d/%02d %02d:%02d:%02d ",
 month, day, year, (hour), minute, second);
 Serial.print(sz);
 }
// print_int(age, TinyGPS::GPS_INVALID_AGE, 5);
 feedgps();
}

static void print_float(float val, float invalid, int len, int prec)
{
 char sz[32];
 if (val == invalid)
 {
 strcpy(sz, "*******");
 sz[len] = 0;
 if (len > 0)
 sz[len-1] = ' ';
 for (int i=7; i<len; ++i)
 sz[i] = ' ';
 Serial.print(sz);
 }
 else
 {
 Serial.print(val, prec);
 int vi = abs((int)val);
 int flen = prec + (val < 0.0 ? 2 : 1);
 flen += vi >= 1000 ? 4 : vi >= 100 ? 3 : vi >= 10 ? 2 : 1;
 for (int i=flen; i<len; ++i)
 Serial.print(" ");
 }
 feedgps();
}

static bool feedgps()
{
 while (nss.available())
 {
 if (gps.encode(nss.read()))
 return true;
 }
 return false;
}

void printWifiData() {
 // print your WiFi shield's IP address:
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);

 // print your MAC address:
 byte mac[6];
 WiFi.macAddress(mac);
 Serial.print("MAC address: ");
 Serial.print(mac[5],HEX);
 Serial.print(":");
 Serial.print(mac[4],HEX);
 Serial.print(":");
 Serial.print(mac[3],HEX);
 Serial.print(":");
 Serial.print(mac[2],HEX);
 Serial.print(":");
 Serial.print(mac[1],HEX);
 Serial.print(":");
 Serial.println(mac[0],HEX);

}

void printCurrentNet() {
 // print the SSID of the network you're attached to:
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());

 // print the MAC address of the router you're attached to:
 byte bssid[6];
 WiFi.BSSID(bssid);
 Serial.print("BSSID: ");
 Serial.print(bssid[5],HEX);
 Serial.print(":");
 Serial.print(bssid[4],HEX);
 Serial.print(":");
 Serial.print(bssid[3],HEX);
 Serial.print(":");
 Serial.print(bssid[2],HEX);
 Serial.print(":");
 Serial.print(bssid[1],HEX);
 Serial.print(":");
 Serial.println(bssid[0],HEX);

 // print the received signal strength:
 long rssi = WiFi.RSSI();
 Serial.print("Signal Strength (RSSI):");
 Serial.println(rssi);

 // print the encryption type:
 byte encryption = WiFi.encryptionType();
 Serial.print("Encryption Type:");
 Serial.println(encryption,HEX);
 Serial.println();
}

[image:]
Data from WiFi set to server

c. [bookmark: _Toc354781432]Time Processing Unit (TPU) Code

“The following code is for the Synchronization Flip-Flop module of the TPU and coded in a VHDL programming Language. In order to synchronize the CPU and TPU based on the Internal Clocks for each board inputs found on both boards have to be sent through a 5 flip-flops that is because the clock speed of the TPU is 20 nanoseconds approximately 5x faster than the board for the CPU 100 nanosecond clock speed. The GPS PPS Signal and the signal coming from the MPPC Sensor (Amplified but not stretched) will be sent through the Synchronization Flip-Flop code.

library ieee;
use ieee.std_logic_1164.all;

entity Synch_flip_flop_5_V3 is

		port(
			--Inputs
				d, clk, reset: in std_logic:='0';
				
			--Outputs
				q: out std_logic :='0');
				
	end entity;
	
	
	
	architecture flip_flop_5 of Synch_flip_flop_5_V1 is
	
	signal d1,d2,d3,d4,d5: std_logic :='0';
	--signal d1,d2,d3,d4,d5: std_logic :=0;
	
	begin
	
			process(d,clk, reset)
	
					begin
							
						d1<=d;	
						
						
						
							-- Flip_flop #1
							if(reset='1') then
								d2<='0';
								
							elsif(clk'event and clk='1') then
								d2<=d1;
								
							end if;
							
							-- Flip_Flop #2
							
							if(reset='1') then
								d3<='0';
								
							elsif(clk'event and clk='1') then
								d3<=d2;
								
							end if;
							
							
							-- Flip_Flop #3
							
							if(reset='1') then
								d4<='0';
								
							elsif(clk'event and clk='1') then
								d4<=d3;
								
							end if;
							
							
								-- Flip_Flop #4
							
							if(reset='1') then
								d5<='0';
								
							elsif(clk'event and clk='1') then
								d5<=d4;
								
							end if;
							
								-- Flip_Flop #5
							
							if(reset='1') then
								q<='0';
								
							elsif(clk'event and clk='1') then
								q<=d5;
								
							end if;
							
							
							
			end process;
			
	end architecture;

“Time_stamp.vhd, this file will be responsible count the nanoseconds in between each GPS PPS (pulse per second) signal and store in a std_logic_vector until arduino is ready for transmission of the data”

library ieee;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity time_stampV3 is
	port(
	--		Input
			sensor_in : in std_logic:='0';
	
			clk_50 : in std_logic:='0';
			
			gps : in std_logic :='0';
			
			reset : in std_logic:='0';

	--		Output
			nanosecond_time_data : out std_logic_vector (39 downto 0):= (others=>'0');
			
			gps_sec_data : out std_logic_vector (39 downto 0):= (others=>'0');			-- Amount of seconds since the CPU and TPU started running.
																												-- This # of seconds will be added to the time of "start-up".
																											 -- That was collected from the GPS shield.
			
			CPU_interrupt : out std_logic := '0');												-- Signal to activate Interrupt routine within CPU
																												-- to begin using the A-to-D Converter on the CPU
																												-- and collect the magnitude of the wave.															
			

end entity;		
	

	
	
	
-- Reset after data has been completely and succesfully transmitted all data.

architecture counter of time_stampV3 is

		--- Take the Sensor "Sensor In" signal after sent through 5 flip flops
		--- Take the GPS "gps" signal after sent through 5 flip flops

		signal gps_start : std_logic :='0'; 		-- GPS Start is the 1st signal that will intial allow the counter to start counting
																--	Synchronizied with international time via the GPS via satellite
												
		signal TPU_time_nanoseconds : std_logic_vector (39 downto 0):= (others=>'0');
																			-- ^ 40- "0" bits

		signal gps_time_seconds : std_logic_vector (39 downto 0):= (others=>'0');
																			-- Reset after data has been completely and succesfully transmitted all 40 bits to the CPU.

	begin

	process(gps,sensor_in,reset,clk_50,gps_start)						--Counter process for the approximate gps 1 second intervals
													
	begin 	
	
-- GPS Function 	
		
			if(gps='1' and gps'event) then 													--GPS PPS signal from GPS shield on the Arduino
			
				gps_start<='1';													--Intial signal to synchronize nanosecond counter to the Arduino GPS PPS Signal

				gps_time_seconds <= gps_time_seconds + 1;					-- GPS Second Conter
			
			end if;
		
--	Sensor function sends time data for the wave directly to the Board Comm.vhd

		if(sensor_in='1' and sensor_in'event) then
-- This if-statement is triggered on the rising-edge of the
-- signal wave to collect the time at which the particle
												-- started passing through the scintillator 		
-- Take the time data for seconds/nanosecond and output to board comm
		nanosecond_time_data <= TPU_time_nanoseconds;							
			gps_sec_data <= gps_time_seconds;
			
			cpu_interrupt <= '1';		
					
			end if;
	--Counter process for the approximate 20 nanosecond internal clock on TPU
			if(clk_50'event and clk_50='1') then 		--Internal 50Mhz Clock = 20ns
				if(gps_start='1') then						--After the intial synchronizing signal (gps_start) has gone high
			
			
	TPU_time_nanoseconds <= TPU_time_nanoseconds + 1;		
				end if;
			end if
	end process;	
end architecture;
	
“Board_com.vhd” This file will be responsible for signaling the CPU when data is ready for transmission as well as waiting for the CPU to send signals to show that CPU is ready for the transmission of data”

library ieee;									
use ieee.std_logic_1164.all;					
use ieee.numeric_bit.all;
use ieee.numeric_std.all; 						

--Board Communication File will be using a producer/consumer communication coding
--Intially Both Boards will start at 0 (or Standby)
--DE0 Will from 0 to 1 to indicate a particle was detected passing through scintillator and has time data ready.
--Arduino will go from 0 to 1 to indicate that arduino is ready for data to be transmitted.

entity board_comV3 is

port(
	-- in ports
		reset_in: in std_logic:='0';
		
		
		consumer_CPU : in std_logic:= '0'; 													-- consumer_CPU = high = '1'
																											--has collected the magnitude of the current cosmic pulse
															--and is now ready for the transmission of time data
																										-- consumer_CPU = Low	= '0'
																											--CPU is NOT ready to recieve the data and should be
														--acquiring data on pulse magnitude
		
		pump_data_CPU : in std_logic:= '0';						-- pump_data_CPU = high = '1'
																											--reading current values in 8 bit data line
																											--increment Byte_set_state counter
																										-- pump_data_CPU = Low	= '0'
																											--Stores byte of data in array in CPU.
																											--Also gives a few clock cycles to the TPU to load
																											--next byte package of data.
		CPU_all_data_recieved: in std_logic := '0';										-- CPU_all_data_recieved = high = '1'
																											--all of the 5 byte size packages were recieved
																										-- CPU_all_data_recieved = Low	= '0'
																											-- data has not been completely been collected and stored
												
		error_transmission :in std_logic:='0';											-- error_transmission = high = '1'
																											--Error Occured.
																											--Restart the process of sending the time data
																										-- error_transmission = Low	= '0'
																											-- No errors have occured
																								
		gps_sec_data : in std_logic_vector (39 downto 0):= (others=>'0');
		
		clock_nano_sec_data : in std_logic_vector (39 downto 0):= (others=>'0');	
		
	--	out ports
		
		producer_TPU: out std_logic:='0';															-- Signal for CPU saying that it is ready to transmit
																												-- and the first byte is loaded and is ready to be read by the CPU
		
									
		data_out_eight_bit_bridge: out std_logic_vector(7 downto 0) := (others=>'0') 				-- 8 Bit Bus to Arduino 			-- Transmits a total 40 bits
		
);
		
		
end entity;

architecture pump_data of board_comV3 is

signal time_stamp: std_logic_vector (39 downto 0) := (others=>'0');
													
signal a0,a1,a2,a3,a4,a5,a6,a7: std_logic:='0';		-- Takes each of the seperate bits from the std_logic_vector and
												-- stores in these single std_logic data types and waits until it is ready to
	
	
begin

process(consumer_CPU,reset_in,CPU_all_data_recieved,pump_data_CPU,a0,a1,a2,a3,a4,a5,a6,a7)

variable byte_set_state: integer range 0 to 5 :=1; 		--Keeps the count for which set (of 8-bits) of the total 40 bits that
																	--is currently going to be sent. Meant to act like a state-machine.
															
															
begin

-- STARTING SEQUENCE --
	-- 1. Will wait until there is a signal from CPU to start sending data.

			 		if(consumer_CPU='1' and consumer_CPU'event) then			-- CPU is ready for time data to start being pumped
				
								producer_TPU <= '1';										-- 1st byte of data will be pumped into pipeline
																					 		
								time_stamp <= clock_nano_sec_data;					-- stores current data values in array for transmission in
																								-- byte size package to be transmitted
						
					end if;
				
				
--LOADING/SENDING LOGIC FOR PIPELINE 				
				
	--Logic for sending & loading each of the byte data sets --
	

		if(consumer_CPU= '1')		then
		
	
				if(pump_data_CPU = '0') 	then 		--
				
				-- send seperate bits through 8 bit digital pin pipeline
						
								data_out_eight_bit_bridge(7) 	<=	a7;
								data_out_eight_bit_bridge(6) 	<=	a6;
								data_out_eight_bit_bridge(5) 	<=	a5;
 				 				data_out_eight_bit_bridge(4)	<=	a4;	
								data_out_eight_bit_bridge(3)	<=	a3;
								data_out_eight_bit_bridge(2)	<=	a2;
								data_out_eight_bit_bridge(1)	<=	a1;
								data_out_eight_bit_bridge(0)	<=	a0;

				
				elsif(pump_data_CPU = '1')	then
				
								if (byte_set_state = 5) then
								
								byte_set_state := 0;
								
								end if;
			
								byte_set_state := byte_set_state + 1;
								
				elsif(error_transmission = '1') then 							-- If error occurs reset state machine and start sending bits again
								
								byte_set_state := 1;
				
				end if;		
			
		end if; 				
				

-- STATE MACHINE FOR DATA TRANSMISSION--			
--1 byte (8-bit) size packages
				
	
			case byte_set_state is 					-- Transmit the 40 bit time data in single byte sets for a total
															-- 5 sets
				when 1 =>
								--Byte Set 1--
								
						a7		<= time_stamp(7);		-- Bit 8
						a6		<= time_stamp(6);		-- Bit 7
						a5		<= time_stamp(5);		-- Bit 6
						a4		<= time_stamp(4);		-- Bit 5
						a3		<= time_stamp(3);		-- Bit 4
						a2		<= time_stamp(2);		-- Bit 3
						a1		<= time_stamp(1);		-- Bit 2
						a0		<= time_stamp(0);		-- Bit 1
			
				when 2 =>
								--Byte Set 2--

				
						a7		<= time_stamp(15);		-- Bit 16
						a6		<= time_stamp(14);		-- Bit 15
						a5		<= time_stamp(13);		-- Bit 14
						a4		<= time_stamp(12);		-- Bit 13
						a3		<= time_stamp(11);		-- Bit 12
						a2		<= time_stamp(10);		-- Bit 11
						a1		<= time_stamp(9);			-- Bit 10
						a0		<= time_stamp(8);			-- Bit 9
			
				when 3 =>
									--Byte Set 3--

						
						a7		<= time_stamp(23);		-- Bit 24
						a6		<= time_stamp(22);		-- Bit 23
						a5		<= time_stamp(21);		-- Bit 22
						a4		<= time_stamp(20);		-- Bit 21
						a3		<= time_stamp(19);		-- Bit 20
						a2		<= time_stamp(18);		-- Bit 19
						a1		<= time_stamp(17);		-- Bit 18
						a0		<= time_stamp(16);		-- Bit 17
				
				when 4 =>
									--Byte Set 4--

				
						a7		<= time_stamp(31);		-- Bit 32
						a6		<= time_stamp(30);		-- Bit 31
						a5		<= time_stamp(29);		-- Bit 30
						a4		<= time_stamp(28);		-- Bit 29
						a3		<= time_stamp(27);		-- Bit 28
						a2		<= time_stamp(26);		-- Bit 27
						a1		<= time_stamp(25);		-- Bit 26
						a0		<= time_stamp(24);		-- Bit 25
			
				when 5 =>
								--Byte Set 5--

						a7		<= time_stamp(39);		-- Bit 40
						a6		<= time_stamp(38);		-- Bit 39
						a5		<= time_stamp(37);		-- Bit 38
						a4		<= time_stamp(36);		-- Bit 37
						a3		<= time_stamp(35);		-- Bit 36
						a2		<= time_stamp(34);		-- Bit 35
						a1		<= time_stamp(33);		-- Bit 34
						a0		<= time_stamp(32);		-- Bit 33
						
				when others=>
	
			end case;
			
			
			
--SUCCESSFUL TRANSMISSION --
		-- Reset all signals to null values and wait for next cosmic event
	
		if(cpu_all_data_recieved = '1') then
		
				producer_TPU <='0';											-- Reset TPU indication signal
				byte_set_state := 1;											-- Set Data Transmission State Machine to State 1
				time_stamp <= (others=>'0');								-- Reset 40 bit signal
				data_out_eight_bit_bridge <= (others=>'0');			-- Reset bridge
	
		end if;

		
		
--RESET SYSTEM--
	--If there is ever a need to reset all values to their default values.
	--this will do that for the whole process as well as send a reset signal
	
		if(reset_in = '1')	then
		
				producer_TPU <='0';											-- Reset TPU indication signal
				byte_set_state := 1;											-- Set Data Transmission State Machine to State 1
				time_stamp <= (others=>'0');								-- Reset 40 bit signal
				data_out_eight_bit_bridge <= (others=>'0');			-- Reset bridge
				
		end if;
	end process;
				
end architecture; 																								

[bookmark: _Toc354781433]Appendix C – Data Sheets

[image:]

[bookmark: _Toc354781434]DE0 Nano

[image:]
[image:]
[image:]
[image:]

[image:]
[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[bookmark: _Toc354781435]Appendix D – Arduino Mega 2560 R3

[image:]

Overview
The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 (datasheet). It has 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. The Mega is compatible with most shields designed for the Arduino Duemilanove or Diecimila.

Schematic & Reference Design
EAGLE files: arduino-mega2560-reference-design.zip
Schematic: arduino-mega2560-schematic.pdf

Summary
Microcontroller 	ATmega2560
Operating Voltage 	5V
Input Voltage (recommended) 7-12V
Input Voltage (limits)
Digital I/O Pins
Analog Input Pins
DC Current per I/O Pin DC Current for 3.3V Pin
Flash Memory
SRAM
EEPROM
Clock Speed

Power
6-20V
54 (of which 14 provide PWM output)
16
40 mA 50 mA
256 KB of which 8 KB used by bootloader
8 KB 4 KB
16 MHz
The Arduino Mega can be powered via the USB connection or with an external power supply. The power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER connector.The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts. The Mega2560 differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-serial converter.

The power pins are as follows:

· VIN - The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.

· 5V - The regulated power supply used to power the microcontroller and other components on the board. This can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.

· 3V3 – A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.

· GND - Ground pins.

Memory
The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and written with the EEPROM library).

Input and Output
Each of the 54 digital pins on the Mega can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 (TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX) TTL serial data. Pins 0 and 1 are also connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip.

External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.

PWM: 0 to 13. Provide 8-bit PWM output with the analogWrite() function.

SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI communication using the SPI library. The SPI pins are also broken out on the ICSP header, which is physically compatible with the Uno, Duemilanove and Diecimila.

LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

I2C: 20 (SDA) and 21 (SCL). Support I2C (TWI) communication using the Wire library (documentation on the Wiring website). Note that these pins are not in the same location as the I2C pins on the Duemilanove or Diecimila. The Mega2560 has 16 analog inputs, each of which provides 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and analogReference() function.

There are a couple of other pins on the board:

AREF. Reference voltage for the analog inputs. Used with analogReference().

Reset. Bring this line LOW to reset the microcontroller. It is typically used to add a reset button to shields which block the one on the board.

Communication
The Arduino Mega2560 has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega2560 provides four hardware UARTs for TTL (5V) serial communication. An ATmega8U2 on the board channels one of these over USB and provides a virtual com port to software on the computer (Windows machines will need a .inf file, but OSX and Linux machines will recognize the board as a COM port automatically. The
Arduino software includes a serial monitor which allows simple textual data to be sent to and from the board. The RX and
TX LEDs on the board will flash when data is being transmitted via the ATmega8U2 chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Mega2560's digital pins.

The ATmega2560 also supports I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus; see the documentation on the Wiring website for details. For SPI communication, use the SPI library.

Programming
The Arduino Mega can be programmed with the Arduino software (download). For details, see the reference and tutorials.

The ATmega2560 on the Arduino Mega comes preburned with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the original STK500 protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header; see these instructions for details.

The ATmega8U2 firmware source code is available in the Arduino repository. The ATmega8U2 is loaded with a DFU bootloader, which can be activated by connecting the solder jumper on the back of the board (near the map of Italy) and then resetting the 8U2. You can then use Atmel's FLIP software (Windows) or the DFU programmer (Mac OS X and Linux) to load a new firmware. Or you can use the ISP header with an external programmer (overwriting the DFU bootloader). See this user-contributed tutorial for more information.

Automatic (Software) Reset
Rather than requiring a physical press of the reset button before an upload, the Arduino Mega2560 is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the ATmega8U2 is connected to the reset line of the ATmega2560 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Mega2560 is connected to either a computer running Mac OS X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Mega2560. While it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make sure that the software with which it communicates waits a second after opening the connection and before sending this data.

The Mega2560 contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

USB Overcurrent Protection
The Arduino Mega2560 has a resettable polyfuse that protects your computer's USB ports from shorts and overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection until the short or overload is removed.

Physical Characteristics and Shield Compatibility
The maximum length and width of the Mega2560 PCB are 4 and 2.1 inches respectively, with the USB connector and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to a surface or case.
Note that the distance between digital pins 7 and 8 is 160 mil (0.16") not an even multiple of the 100 mil spacing of the other pins.

The Mega2560 is designed to be compatible with most shields designed for the Uno, Diecimila or Duemilanove. Digital pins 0 to 13 (and the adjacent AREF and GND pins), analog inputs 0 to 5, the power header, and ICSP header are all in equivalent locations. Further the main UART (serial port) is located on the same pins (0 and 1), as are external interrupts
0 and 1 (pins 2 and 3 respectively). SPI is available through the ICSP header on the Mega2560 and Duemilanove / Diecimila.
Please note that I2C is not located on the same pins on the Mega (20 and 21) as the Duemilanove / Diecimila (analog inputs 4 and 5).

Version 3	2/7/2013	Page 8 of 59

Version 7	04/24/2013	Page 2 of 101

image2.emf

12VDC ADAPTER

ARDUINO VOLTAGE

MEGA2560 DIVIDER

WIFI GPS HVPSU

(3.3V) (5.0V)

MPPC

AMPLIFIER 4.5V BIPOLAR PSU

120VAC

5.0V

12VDC ADAPTER

ARDUINO VOLTAGE

MEGA2560 DIVIDER

WIFI GPS HVPSU

(3.3V) (5.0V)

MPPC

AMPLIFIER

4.5V BIPOLAR PSU

120VAC

5.0V

image3.png

image4.png

image5.jpeg

image6.png

image7.png

image8.png

image9.jpeg

image10.png

image11.jpeg

image12.png

image13.png

image14.png

image15.png

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.emf

image21.jpeg

image22.jpeg

image23.jpeg

image24.png

image25.jpeg

image26.jpeg

image27.jpeg

image28.png

image29.jpeg

image30.jpeg

image31.jpeg

image32.png

image33.jpeg

image34.jpeg

image35.jpeg

image36.jpeg

image37.jpeg

image38.jpeg

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image46.jpeg

image1.emf

SCINTILLATOR MPPC

GPS

AMPLIFIER+

PULSE STRETCH

CPU + TPU

WIFI USER

RAY PHOTONS

P
U
L
S
E 1

P
P
S

SCINTILLATOR MPPC

GPS

AMPLIFIER+

PULSE STRETCH

CPU + TPU

WIFI USER

RAY

PHOTONS

P

U

L

S

E

1

P

P

S

