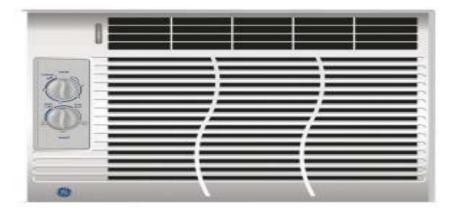
Senior Design Team 20 Solar Powered Phase-Change Compressor

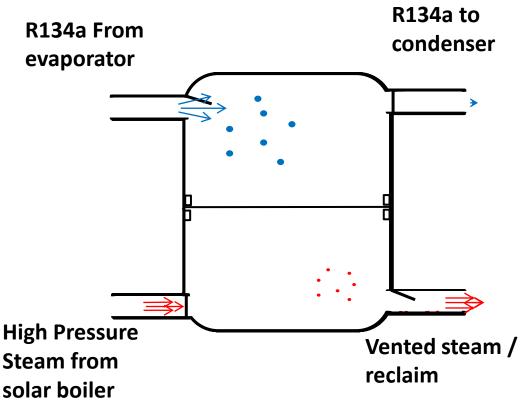
Final Fall Presentation December 6, 2012

Addison Bender Jesse Diaz Emmanuel Ferdinand

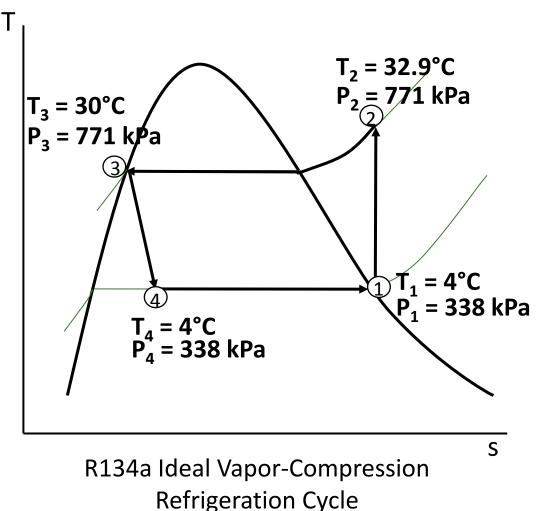

Sponsor: Grant Peacock Faculty Advisor: Dr. Ordonez

Project Definition

• Need Statement:

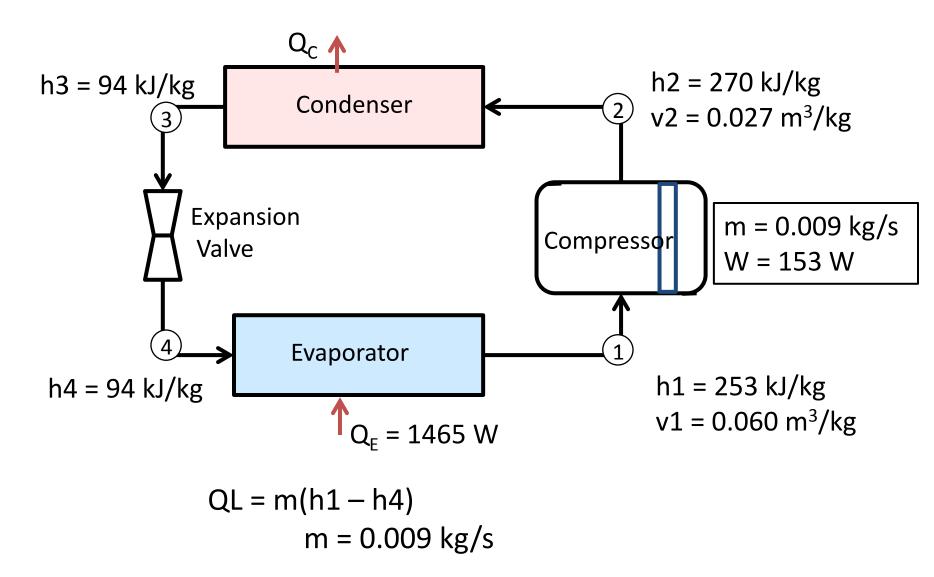

Design a compressor for a refrigeration system that can be powered by solar energy

- Objective: 5,000 BTU/hr (1465 W)
- Solar-Thermal Driven
- Budget: \$2000



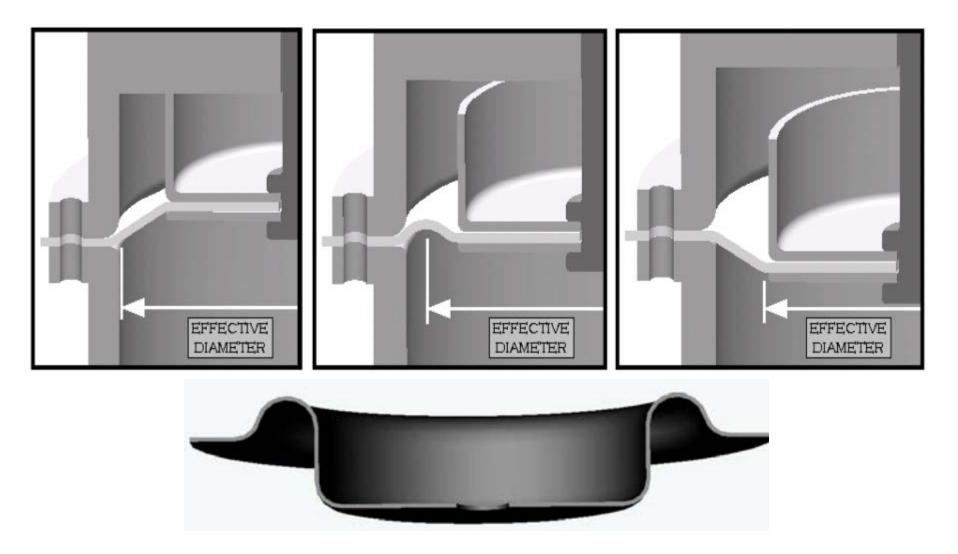
Design Concept

- Pressure from boiler raises the membrane and compresses refrigerant.
- Steam is vented and refrigerant is drawn into compressor.
- Vent is closed, cycle repeats.



Thermodynamic Model: Refrigeration Cycle

- Isentropic compression
- Isobaric heat rejection
- Adiabatic expansion
- Isobaric heat absorption
- Pressures are limited by T of environment
- **ΔP** = 433 kPa


Thermodynamic Model: Refrigeration Cycle

Selecting Diaphragm

- $V = (m \cdot v_{avg}) / f$
- Valve capability: max 200Hz, 500x10⁶ cycles
- f = 2Hz
- m = 0.009 kg/s
- $v_{avg} = 0.037 \text{ m}^3/\text{kg}$
- $V = 1.67 \times 10^{-4} \text{ m}^3$:Required Displacement

Selecting Diaphragm

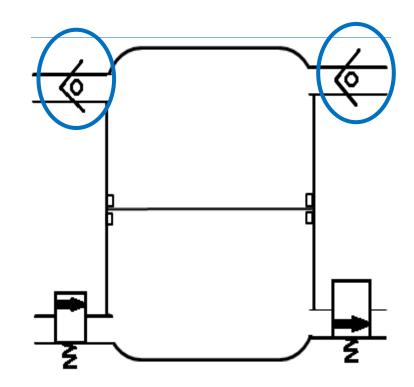
Selecting Diaphragm

• Elasticity of material is used to predict deflection when loaded

$$\delta = \frac{3}{16} (1 - \nu^2) \frac{P R^4}{E t^3}$$

• Silicone elastomer selected for high temperature tolerance • $\delta/D < 0.25$

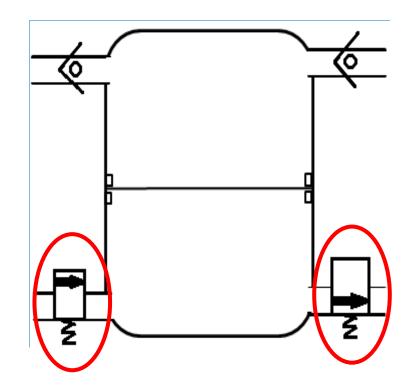
$$V_{cap} = \frac{1}{6} \pi \delta (3R^2 + \delta^2)$$


• Result: D = 12cm, δ = 2.7 cm, t = 1.3 cm

R

Check Valves

- Fluid only flows in one direction
- Two-port valves
- Operates automatically
 - No need for external control
 - Allows flow once it reaches its "cracking pressure"


Refrigeration Check Valve

- For use with many refrigerants, including R-134a
- Spring-loaded check ball
- Mounts in any position
- Copper body

High Frequency Valves

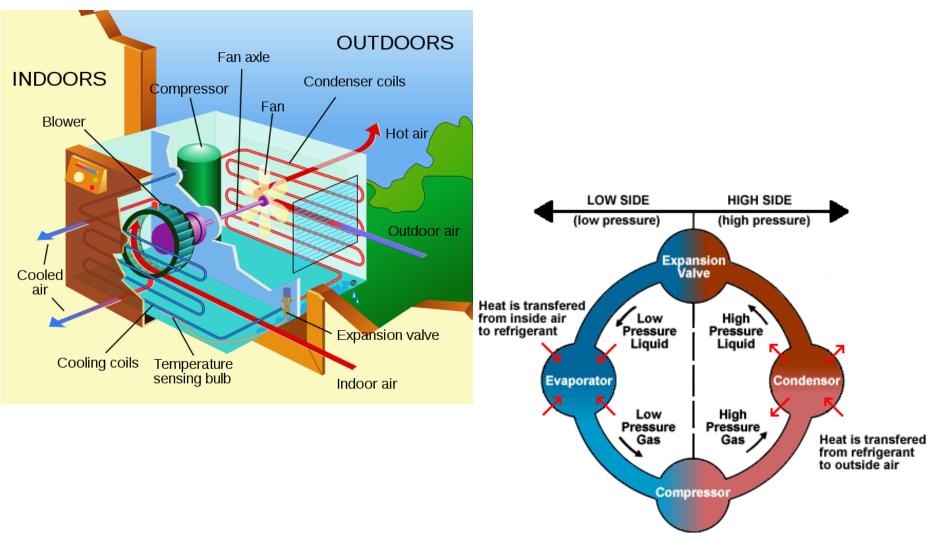
- Solenoid valve
 - Electromechanically operated valve
 - Fast and safe switching between "suction" and "discharge"
- Steady Flow
 - High frequency simulates steady flow
 - Necessity for compressing the refrigerant

Solenoid Valve

- Max fluid temp of 82 °C
- Max operating pressure differential of 1,034 kPa
- Power to operate at 2 W
- Constructed of Brass

Electric Steam Boiler

- Simulates solar powered steam generation system
 - Easily controlled
 - Adjusts to multiple fittings
- Produces up 80 kg/hr at 650 C
- Testing will take place at the Florida State University ESC



Steam Generation

- Based on John
 Dascomb's
 concentrating solar
 collector
- Solar collector must have an Area = 17.75m²
- System will generate the required 770 kPa

A/C Refrigeration Cycle

Refrigeration Selection

- Pressure created by compressor limited by the solar-steam pressure.
- Inferior compression power to electrical compressors.
- Refrigerants used in air Conditioning
 - R22 No longer commercially available
 - R410a Requires High Pressure
 - R134a Low pressure/automobile use (mostly)

Refrigeration Selection

- P_H is the pressure on the condenser side and depends on the temperature outside
 - 190 psi < Рн-в22 < 250 psi (Cp= 0.65 kJ/kg*K)
 - 100 °F < T_{H-R22} < 120 °F (Pressure –Temperature chart)
 - Q=mCp∆T
 - 75 °F < Ref < 90 °F (Pressure –Temperature chart)</p>
 - 218 psi < Рн-к401а < 274 psi (Cp= 0.87 kJ/kg*K)
 - 78 psi < Рн-ваза < 104 psi (Cp= 0.84 kJ/kg*K)

Safety and Environmental Concerns

- Pressure Vessel
 - High strength material
 - Second casing to contain failure
- Refrigerant
 - A1 safety classification
 - Not corrosive
 - ODP=0
 - GWP=1300

	lower toxicity	higher toxicity	
higher flammability	A3	B3	LFL ≤0.10 kg/m ¹ or heat of con- bustion ≥19 000 kJ/kg
lower flammability	A2	B2	LFL >0.10 kg/m ¹ and heat of com bustion <19 000 kJ/kg
no flame propagation	A1	B 1	no LFL based on modified ASTM E681-85 test
	no identified toxic- ity at concentra- tions ≤400 ppm	avidence of toxicity bolow 400 ppm (based on data for TLV-TWA or consis- tent indices)	

ASHRAE refrigerant safety rating

Bill of Materials

Description	Quantity	Price
Silicone Diaphragm	1	\$123.01
1018 Steel Rod	1	\$124.12
Solenoid Valve	2	\$388.50
Check Valve	2	\$76.10
	Total	\$711.73

Questions?

